Primitive of Reciprocal of Root of x squared minus a squared/Logarithm Form/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {\d x} {\sqrt {x^2 - a^2} } = \ln \size {x + \sqrt {x^2 - a^2} } + C$

for $0 < a < \size x$.


Proof

\(\ds \int \frac {\d x} {\sqrt {x^2 - a^2} }\) \(=\) \(\ds \cosh^{-1} {\frac x a} + C'\) Primitive of Reciprocal of $\sqrt {x^2 - a^2}$: $\cosh^{-1}$ form
\(\ds \) \(=\) \(\ds \map \ln {\frac x a + \sqrt {\paren {\frac x a}^2 - 1} } + C'\) Definition of Real Inverse Hyperbolic Cosine
\(\ds \) \(=\) \(\ds \map \ln {\frac x a + \sqrt {\frac {x^2 - a^2} {a^2} } } + C'\) rearrangement
\(\ds \) \(=\) \(\ds \map \ln {\frac {x + \sqrt {x^2 - a^2} } a} + C'\) rearrangement
\(\ds \) \(=\) \(\ds \map \ln {x + \sqrt {x^2 - a^2} } - \ln a + C'\) Difference of Logarithms
\(\ds \) \(=\) \(\ds \map \ln {x + \sqrt {x^2 - a^2} } + C\) putting $C = -\ln a + C'$

$\blacksquare$