Primitive of Reciprocal of Sine of a x by Cosine of a x

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {\d x} {\sin a x \cos a x} = \frac 1 a \ln \size {\tan a x} + C$


Proof

\(\ds \int \frac {\d x} {\sin a x \cos a x}\) \(=\) \(\ds \int \frac {\sec a x \rd x} {\sin a x}\) Secant is Reciprocal of Cosine
\(\ds \) \(=\) \(\ds \int \frac {\sec^2 a x \rd x} {\sin a x \sec a x}\) multiplying top and bottom by $\sec a x$
\(\ds \) \(=\) \(\ds \int \frac {\sec^2 a x \rd x} {\frac {\sin a x} {\cos a x} }\) Secant is Reciprocal of Cosine
\(\ds \) \(=\) \(\ds \int \frac {\sec^2 a x \rd x} {\tan a x}\) Tangent is Sine divided by Cosine
\(\ds \) \(=\) \(\ds \frac 1 a \ln \size {\tan a x} + C\) Primitive of $\dfrac {\sec^2 a x} {\tan a x}$

$\blacksquare$


Sources