Primitive of Reciprocal of Sine of a x plus Cosine of a x/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {\d x} {\sin a x + \cos a x} = \frac 1 {a \sqrt 2} \ln \size {\map \tan {\frac {a x} 2 + \frac \pi 8} } + C$


Proof

\(\ds \int \frac {\d x} {\sin a x + \cos a x}\) \(=\) \(\ds \frac 1 a \int \frac {\dfrac {2 \rd u} {1 + u^2} } {\dfrac {2 u} {1 + u^2} + \dfrac {1 - u^2} {1 + u^2} }\) Weierstrass Substitution: $u = \tan \dfrac {a x} 2$
\(\ds \) \(=\) \(\ds \frac 2 a \int \frac {\d u} {- u^2 + 2 u + 1}\) simplifying
\(\ds \) \(=\) \(\ds \frac 2 a \paren {\frac 1 {\sqrt 8} \ln \size {\frac {-2 u + 2 - \sqrt 8} {-2 u + 2 + \sqrt 8} } } + C\) Primitive of $\dfrac 1 {a x^2 + b x + c}$
\(\ds \) \(=\) \(\ds \frac 1 {a \sqrt 2} \ln \size {\frac {u - 1 + \sqrt 2} {u - 1 - \sqrt 2} } + C\) simplifying
\(\ds \) \(=\) \(\ds \frac 1 {a \sqrt 2} \ln \size {\frac {\tan \dfrac {a x} 2 - \paren {1 - \sqrt 2} } {\tan \dfrac {a x} 2 - \paren {1 + \sqrt 2} } } + C\) substituting for $u$
\(\ds \) \(=\) \(\ds \frac 1 {a \sqrt 2} \ln \size {\frac {\tan \dfrac {a x} 2 - \tan \dfrac \pi 8} {\tan \dfrac {a x} 2 - \tan \dfrac {3 \pi} 8} } + C\) Tangent of $\dfrac \pi 8$ and Tangent of $\dfrac {3 \pi} 8$