Primitive of Reciprocal of p squared minus square of q by Sine of a x

From ProofWiki
Jump to navigation Jump to search

Theorem

$\displaystyle \int \frac {\d x} {p^2 - q^2 \sin^2 a x} = \begin{cases} \displaystyle \frac 1 {a p \sqrt{p^2 - q^2} } \arctan \frac {\sqrt{p^2 - q^2} \tan a x} p & : p^2 > q^2 \\ \displaystyle \frac 1 {2 a p \sqrt{q^2 - p^2} } \ln \size {\frac {\sqrt {q^2 - p^2} \tan a x + p} {\sqrt {q^2 - p^2} \tan a x - p} } & : p^2 < q^2 \end{cases}$


Proof


Also see


Sources