Primitive of Reciprocal of q plus p by Secant of a x

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {\d x} {q + p \sec a x} = \frac x q - \frac p q \int \frac {\d x} {p + q \cos a x} + C$


Proof

\(\ds \int \frac {\d x} {q + p \sec a x}\) \(=\) \(\ds \frac 1 q \int \frac {q \rd x} {q + p \sec a x}\) multiplying top and bottom by $q$
\(\ds \) \(=\) \(\ds \frac 1 q \int \frac {\paren {q + p \sec a x - p \sec a x} \rd x} {q + p \sec a x}\)
\(\ds \) \(=\) \(\ds \frac 1 q \int \frac {\paren {q + p \sec a x} \rd x} {q + p \sec a x} - \frac p q \int \frac {\sec a x \rd x} {q + p \sec a x}\) Linear Combination of Primitives
\(\ds \) \(=\) \(\ds \frac 1 q \int \d x - \frac p q \int \frac {\sec a x \rd x} {q + p \sec a x}\) simplifying
\(\ds \) \(=\) \(\ds \frac x q - \frac p q \int \frac {\sec a x \rd x} {q + p \sec a x} + C\) Primitive of Constant
\(\ds \) \(=\) \(\ds \frac x q - \frac p q \int \frac {\cos a x \sec a x \rd x} {q \cos a x + p \cos a x \sec a x} + C\) multiplying top and bottom by $\cos a x$
\(\ds \) \(=\) \(\ds \frac x q - \frac p q \int \frac {\d x} {p + q \cos a x} + C\) Secant is Reciprocal of Cosine

$\blacksquare$


Also see


Sources