Primitive of Reciprocal of square of p plus q by Sine of a x/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {\d x} {\paren {p + q \sin a x}^2} = \frac {q \cos a x} {a \paren {p^2 - q^2} \paren {p + q \sin a x} } + \frac p {p^2 - q^2} \int \frac {\d x} {p + q \sin a x}$


Proof

\(\ds \map {\dfrac \d {\d x} } {\dfrac {\cos a x} {p + q \sin a x} }\) \(=\) \(\ds \dfrac {\paren {p + q \sin a x} \map {\frac \d {\d x} } {\cos a x} - \cos a x \map {\frac \d {\d x} } {p + q \sin a x} } {\paren {p + q \sin a x}^2}\) Quotient Rule for Derivatives
\(\ds \) \(=\) \(\ds \dfrac {\paren {p + q \sin a x} \paren {-a \sin a x} - \cos a x \paren {a q \cos a x} } {\paren {p + q \sin a x}^2}\) Derivative of Cosine Function, Derivative of Sine Function
\(\ds \) \(=\) \(\ds -a \dfrac {p \sin a x + q \paren {\sin^2 a x + \cos^2 a x} } {\paren {p + q \sin a x}^2}\) simplification
\(\ds \) \(=\) \(\ds -a \dfrac {p \sin a x + q} {\paren {p + q \sin a x}^2}\) Sum of Squares of Sine and Cosine
\(\ds \) \(=\) \(\ds -a \dfrac {p q \sin a x + q^2} {q \paren {p + q \sin a x}^2}\)
\(\ds \) \(=\) \(\ds -a \dfrac {p q \sin a x + q^2 + p^2 - p^2} {q \paren {p + q \sin a x}^2}\)
\(\ds \) \(=\) \(\ds -a \dfrac {q^2 - p^2} {q \paren {p + q \sin a x}^2} - a \dfrac {p q \sin a x + p^2} {q \paren {p + q \sin a x}^2}\)
\(\ds \) \(=\) \(\ds a \dfrac {p^2 - q^2} {q \paren {p + q \sin a x}^2} - a \dfrac {p \paren {p + q \sin a x} } {q \paren {p + q \sin a x}^2}\)
\(\ds \) \(=\) \(\ds \dfrac {a \paren {p^2 - q^2} } {q \paren {p + q \sin a x}^2} - \dfrac {a p} q \dfrac 1 {p + q \sin a x}\)
\(\ds \leadsto \ \ \) \(\ds \dfrac q {a \paren {p^2 - q^2} } \map {\dfrac \d {\d x} } {\dfrac {\cos a x} {p + q \sin a x} }\) \(=\) \(\ds \dfrac 1 {\paren {p + q \sin a x}^2} - \dfrac p {\paren {p^2 - q^2} } \dfrac 1 {p + q \sin a x}\)
\(\ds \leadsto \ \ \) \(\ds \dfrac q {a \paren {p^2 - q^2} } {\dfrac {\cos a x} {p + q \sin a x} }\) \(=\) \(\ds \int \dfrac {\d x} {\paren {p + q \sin a x}^2} - \dfrac p {\paren {p^2 - q^2} } \int \dfrac {\d x} {p + q \sin a x}\)

Hence the result.

$\blacksquare$