Primitive of Reciprocal of x by Power of x minus Power of a

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {\d x} {x \paren {x^n - a^n} } = \frac 1 {n a^n} \ln \size {\frac {x^n - a^n} {x^n} } + C$


Proof

\(\ds \int \frac {\d x} {x \paren {x^n - a^n} }\) \(=\) \(\ds \int \frac {a^n \rd x} {a^n x \paren {x^2 - a^2} }\) multiplying top and bottom by $a^n$
\(\ds \) \(=\) \(\ds \int \frac {\paren {-\paren {x^n - a^n} + x^n} \rd x} {a^n x \paren {x^n - a^n} }\) adding and subtracting $x^n$
\(\ds \) \(=\) \(\ds \frac {-1} {a^n} \int \frac {\paren {x^n - a^n} \rd x} {x \paren {x^n - a^n} } + \frac 1 {a^n} \int \frac {x^n \rd x} {x \paren {x^n - a^n} }\) Linear Combination of Primitives
\(\ds \) \(=\) \(\ds \frac {-1} {a^n} \int \frac {\d x} x + \frac 1 {a^n} \int \frac {x^{n - 1} \rd x} {x^n - a^n}\) simplifying
\(\ds \) \(=\) \(\ds \frac {-1} {a^n} \ln \size x + \frac 1 {a^n} \int \frac {x^{n - 1} \rd x} {x^n - a^n} + C\) Primitive of Reciprocal
\(\ds \) \(=\) \(\ds \frac {-1} {a^n} \ln \size x + \frac 1 {a^n} \paren {\frac 1 n \ln \size {x^n - a^n} } + C\) Primitive of $\dfrac {x^{n - 1} } {x^n - a^n}$
\(\ds \) \(=\) \(\ds \frac {-1} {n a^n} \ln \size {x^n} + \frac 1 {n a^n} \ln \size {x^n - a^n} + C\) Logarithm of Power
\(\ds \) \(=\) \(\ds \frac 1 {n a^n} \ln \size {\frac {x^n - a^n} {x^n} } + C\) Difference of Logarithms

$\blacksquare$


Sources