Primitive of Reciprocal of x by Root of a x + b
Jump to navigation
Jump to search
Theorem
For $a > 0$ and for $x \ne 0$:
- $\ds \int \frac {\d x} {x \sqrt {a x + b} } = \begin {cases} \dfrac 1 {\sqrt b} \ln \size {\dfrac {\sqrt {a x + b} - \sqrt b} {\sqrt {a x + b} + \sqrt b} } + C & : b > 0 \\ \dfrac 2 {\sqrt {-b} } \arctan \sqrt {\dfrac {a x + b} {-b} } + C & : b < 0 \end {cases}$
where $a x + b > 0$.
Proof
Let:
\(\ds u\) | \(=\) | \(\ds \sqrt {a x + b}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds x\) | \(=\) | \(\ds \frac {u^2 - b} a\) |
Thus:
\(\ds \map F {\sqrt {a x + b} }\) | \(=\) | \(\ds \frac 1 {x \sqrt {a x + b} }\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map F u\) | \(=\) | \(\ds \paren {\frac a {u^2 - b} } \frac 1 u\) |
Then:
\(\ds \int \frac {\d x} {x \sqrt {a x + b} }\) | \(=\) | \(\ds \frac 2 a \int u \paren {\frac a {u^2 - b} } \frac 1 u \rd u\) | Primitive of Function of $\sqrt {a x + b}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds 2 \int \frac {\d u} {u^2 - b}\) | Primitive of Constant Multiple of Function |
Let $b > 0$.
Let $d = \sqrt b$.
Then:
\(\ds 2 \int \frac {\d u} {u^2 - b}\) | \(=\) | \(\ds 2 \int \frac {\d u} {u^2 - d^2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 2 \paren {\frac 1 {2 d} } \ln \size {\frac {u - d} {u + d} } + C\) | Primitive of Reciprocal of $x^2 - a^2$: Logarithm Form | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 {\sqrt b} \ln \size {\dfrac {\sqrt {a x + b} - \sqrt b} {\sqrt {a x + b} + \sqrt b} } + C\) | substituting for $u$ and $d$ |
$\Box$
Let $b < 0$.
Let $d = \sqrt {-b}$.
Then:
\(\ds 2 \int \frac {\d u} {u^2 - b}\) | \(=\) | \(\ds 2 \int \frac {\d u} {u^2 - \paren {-d^2} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 2 \int \frac {\d u} {u^2 + d^2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 2 \paren {\frac 1 d} \arctan {\frac u d} + C\) | Primitive of Reciprocal of $x^2 + a^2$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 2 {\sqrt {-b} } \arctan \sqrt {\dfrac {a x + b} {-b} } + C\) | substituting for $u$ and $d$ |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $\sqrt {a x + b}$: $14.87$