Primitive of Reciprocal of x by a squared minus x squared squared

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {\d x} {x \paren {a^2 - x^2}^2} = \frac 1 {2 a^2 \paren {a^2 - x^2} } + \frac 1 {2 a^4} \map \ln {\frac {x^2} {a^2 - x^2} } + C$

for $x^2 < a^2$.


Proof

\(\ds \int \frac {\d x} {x \paren {a^2 - x^2}^2}\) \(=\) \(\ds \int \paren {\frac 1 {a^4 x} + \frac x {a^4 \paren {a^2 - x^2} } + \frac x {a^2 \paren {a^2 - x^2}^2} } \rd x\) Partial Fraction Expansion
\(\ds \) \(=\) \(\ds \frac 1 {a^4} \int \frac {\d x} x + \frac 1 {a^4} \int \frac {x \rd x} {a^2 - x^2} + \frac 1 {a^2} \int \frac {x \rd x} {\paren {a^2 - x^2}^2}\) Linear Combination of Primitives
\(\ds \) \(=\) \(\ds \frac 1 {a^4} \ln \size x + \frac 1 {a^4} \int \frac {x \rd x} {a^2 - x^2} + \frac 1 {a^2} \int \frac {x \rd x} {\paren {a^2 - x^2}^2} + C\) Primitive of Reciprocal
\(\ds \) \(=\) \(\ds \frac 1 {a^4} \ln \size x + \frac 1 {a^4} \paren {-\frac 1 2 \map \ln {a^2 - x^2} } + \frac 1 {a^2} \int \frac {x \rd x} {\paren {a^2 - x^2}^2} + C\) Primitive of $\dfrac x {a^2 - x^2}$
\(\ds \) \(=\) \(\ds \frac 1 {a^4} \ln \size x - \frac 1 {2 a^4} \map \ln {a^2 - x^2} + \frac 1 {a^2} \paren {\frac 1 {2 \paren {a^2 - x^2} } } + C\) Primitive of $\dfrac x {\paren {a^2 - x^2}^2}$
\(\ds \) \(=\) \(\ds \frac 1 {2 a^4} \map \ln {x^2} - \frac 1 {2 a^4} \map \ln {a^2 - x^2} + \frac 1 {2 a^2 \paren {a^2 - x^2} } + C\) Logarithm of Power and $x^2 > 0$
\(\ds \) \(=\) \(\ds \frac 1 {2 a^2 \paren {a^2 - x^2} } + \frac 1 {2 a^4} \map \ln {\frac {x^2} {a^2 - x^2} } + C\) Difference of Logarithms

$\blacksquare$


Also see


Sources