Primitive of Reciprocal of x by a x + b cubed/Partial Fraction Expansion

From ProofWiki
Jump to navigation Jump to search

Lemma for Primitive of $\dfrac 1 {x \paren {a x + b}^3}$

$\dfrac 1 {x \paren {a x + b}^3} \equiv \dfrac 1 {b^3 x} - \dfrac a {b^3 \paren {a x + b} } - \dfrac a {b^2 \paren {a x + b}^2} - \dfrac a {b \paren {a x + b}^3}$


Proof

\(\ds \dfrac 1 {x \paren {a x + b}^3}\) \(\equiv\) \(\ds \dfrac A x + \dfrac B {a x + b} + \dfrac C {\paren {a x + b}^2} + \dfrac D {\paren {a x + b}^3}\)
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds 1\) \(\equiv\) \(\ds A \paren {a x + b}^3 + B x \paren {a x + b}^2 + C x \paren {a x + b} + D x\) multiplying through by $x \paren {a x + b}^3$
\(\ds \) \(\equiv\) \(\ds A a^3 x^3 + 3 A a^2 b x^2 + 3 A a b^2 x + A b^3\) multiplying everything out
\(\ds \) \(\) \(\, \ds + \, \) \(\ds B a^2 x^3 + 2 B a b x^2 + B b^2 x + C a x^2 + C b x + D x\)


Setting $a x + b = 0$ in $(1)$:

\(\ds a x + b\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds -\frac b a\)
\(\ds \leadsto \ \ \) \(\ds D \paren {-\frac b a}\) \(=\) \(\ds 1\) substituting for $x$ in $(1)$: terms in $a x + b$ are all $0$
\(\ds \leadsto \ \ \) \(\ds D\) \(=\) \(\ds -\frac a b\)


Equating constants in $(1)$:

\(\ds 1\) \(=\) \(\ds A b^3\)
\(\text {(2)}: \quad\) \(\ds \leadsto \ \ \) \(\ds A\) \(=\) \(\ds \frac 1 {b^3}\)


Equating $3$rd powers of $x$ in $(1)$:

\(\ds 0\) \(=\) \(\ds A a^3 + B a^2\)
\(\ds \leadsto \ \ \) \(\ds B a^2\) \(=\) \(\ds -\frac {a^3} {b^3}\) substituting for $A$ from $(2)$
\(\text {(3)}: \quad\) \(\ds \leadsto \ \ \) \(\ds B\) \(=\) \(\ds -\frac a {b^3}\) simplifying


Equating $2$nd powers of $x$ in $(1)$:

\(\ds 0\) \(=\) \(\ds 3 A a^2 b + 2 B a b + C a\)
\(\ds \leadsto \ \ \) \(\ds C\) \(=\) \(\ds -3 A a b - 2 B b\) rerranging
\(\ds \) \(=\) \(\ds -3 a b \frac 1 {b^3} + 2 b \frac a {b^3}\) substituting for $A$ from $(2)$ and $B$ from $(3)$
\(\ds \) \(=\) \(\ds -3 \frac a {b^2} + 2 \frac a {b^2}\) simplifying
\(\ds \) \(=\) \(\ds -\frac a {b^2}\) simplifying


Summarising:

\(\ds A\) \(=\) \(\ds \frac 1 {b^3}\)
\(\ds B\) \(=\) \(\ds -\frac a {b^3}\)
\(\ds C\) \(=\) \(\ds -\frac a {b^2}\)
\(\ds D\) \(=\) \(\ds -\frac a b\)

Hence the result.

$\blacksquare$