Primitive of Reciprocal of x by a x + b squared/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {\d x} {x \paren {a x + b}^2} = \frac 1 {b \paren {a x + b} } + \frac 1 {b^2} \ln \size {\frac x {a x + b} } + C$


Proof

\(\ds \int \frac {\d x} {x \paren {a x + b}^2}\) \(=\) \(\ds \int \frac {b \rd x} {b x \paren {a x + b}^2}\) multiplying top and bottom by $b$
\(\ds \) \(=\) \(\ds \int \frac {\paren {a x + b - a x} \rd x} {b x \paren {a x + b}^2}\) adding and subtracting $a x$
\(\ds \) \(=\) \(\ds \frac 1 b \int \frac {\paren {a x + b} \rd x} {x \paren {a x + b}^2} - \frac a b \int \frac {x \rd x} {x \paren {a x + b}^2}\) Linear Combination of Primitives
\(\ds \) \(=\) \(\ds \frac 1 b \int \frac {\d x} {x \paren {a x + b} } - \frac a b \int \frac {\d x} {\paren {a x + b}^2}\) simplifying
\(\ds \) \(=\) \(\ds \frac 1 b \paren {\frac 1 b \ln \size {\frac x {a x + b} } } - \frac a b \int \frac {\d x} {\paren {a x + b}^2} + C\) Primitive of $\dfrac 1 {x \paren {a x + b} }$
\(\ds \) \(=\) \(\ds \frac 1 {b^2} \ln \size {\frac x {a x + b} } - \frac a b \paren {-\frac 1 {a \paren {a x + b} } } + C\) Primitive of $\dfrac 1 {\paren {a x + b}^2}$
\(\ds \) \(=\) \(\ds \frac 1 {b \paren {a x + b} } + \frac 1 {b^2} \ln \size {\frac x {a x + b} } + C\) simplifying

$\blacksquare$