Primitive of Reciprocal of x by square of a x squared plus b x plus c/Partial Fraction Expansion

From ProofWiki
Jump to navigation Jump to search

Lemma for Primitive of $\frac 1 {x \paren {a x^2 + b x + c}^2}$

$\dfrac 1 {x \paren {a x^2 + b x + c}^2} \equiv \dfrac 1 {c^2 x} - \dfrac {a x + b} {c^2 \paren {a x^2 + b x + c} } - \dfrac {a x + b} {c \paren {a x^2 + b x + c}^2}$


Proof

\(\ds \dfrac 1 {x \paren {a x^2 + b x + c}^2}\) \(\equiv\) \(\ds \frac A x + \frac {B x + C} {a x^2 + b x + c} + \frac {D x + E} {\paren {a x^2 + b x + c}^2}\)
\(\ds \leadsto \ \ \) \(\ds 1\) \(\equiv\) \(\ds A \paren {a x^2 + b x + c}^2\) multiplying through by $x \paren {a x^2 + b x + c}^2$
\(\ds \) \(\) \(\, \ds + \, \) \(\ds \paren {B x + C} x \paren {a x^2 + b x + c} + \paren {D x + E} x\)
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds 1\) \(\equiv\) \(\ds A a^2 x^4 + 2 A a b x^3 + 2 A a c x^2\) multiplying out
\(\ds \) \(\) \(\, \ds + \, \) \(\ds A b^2 x^2 + 2 A b c x + A c^2\)
\(\ds \) \(\) \(\, \ds + \, \) \(\ds B a x^4 + B b x^3 + B c x^2\)
\(\ds \) \(\) \(\, \ds + \, \) \(\ds C a x^3 + C b x^2 + C c x\)
\(\ds \) \(\) \(\, \ds + \, \) \(\ds D x^2 + E x\)


Setting $x = 0$ in $(1)$:

\(\ds A c^2\) \(=\) \(\ds 1\)
\(\text {(2)}: \quad\) \(\ds \leadsto \ \ \) \(\ds A\) \(=\) \(\ds \frac 1 {c^2}\)


Equating coefficients of $x^4$ in $(1)$:

\(\ds A a^2 + B a\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds \frac {a^2} {c^2}\) \(=\) \(\ds -B a\) substituting for $A$ from $(2)$
\(\text {(3)}: \quad\) \(\ds \leadsto \ \ \) \(\ds B\) \(=\) \(\ds \frac {-a} {c^2}\)


Equating coefficients of $x^3$ in $(1)$:

\(\ds 2 A a b + B b + C a\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds 2 \frac 1 {c^2} a b + \frac {-a} {c^2} b\) \(=\) \(\ds -C a\) substituting for $A$ from $(2)$ and $B$ from $(3)$
\(\ds \leadsto \ \ \) \(\ds 2 \frac b {c^2} + \frac {-b} {c^2}\) \(=\) \(\ds -C\) simplifying
\(\text {(4)}: \quad\) \(\ds \leadsto \ \ \) \(\ds C\) \(=\) \(\ds \frac {-b} {c^2}\) simplifying


Equating coefficients of $x$ in $(1)$:

\(\ds 2 A b c + C c + E\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds 2 \frac 1 {c^2} b c + \frac {-b} {c^2} c\) \(=\) \(\ds -E\)
\(\ds \leadsto \ \ \) \(\ds E\) \(=\) \(\ds -2 \frac b c + \frac b c\)
\(\ds \leadsto \ \ \) \(\ds E\) \(=\) \(\ds \frac {-b} c\)


Equating coefficients of $x^2$ in $(1)$:

\(\ds A \paren {2 a c + b^2} + B c + C b + D\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds \frac 1 {c^2} \paren {2 a c + b^2} + \frac {-a} {c^2} c + \frac {-b} {c^2} b\) \(=\) \(\ds - D\)
\(\ds \leadsto \ \ \) \(\ds D\) \(=\) \(\ds \frac {-2 a} c + \frac {-b^2} {c^2} + \frac a c + \frac {b^2} {c^2}\)
\(\ds \leadsto \ \ \) \(\ds D\) \(=\) \(\ds \frac {-a} c\)


Summarising:

\(\ds A\) \(=\) \(\ds \frac 1 {c^2}\)
\(\ds B\) \(=\) \(\ds \frac {-a} {c^2}\)
\(\ds C\) \(=\) \(\ds \frac {-b} {c^2}\)
\(\ds D\) \(=\) \(\ds \frac {-a} c\)
\(\ds E\) \(=\) \(\ds \frac {-b} c\)


Hence the result.

$\blacksquare$