Primitive of Reciprocal of x by x squared minus a squared/Partial Fraction Expansion

From ProofWiki
Jump to navigation Jump to search

Lemma for Primitive of Reciprocal of $x \paren {x^2 - a^2}$

$\dfrac 1 {x \paren {x^2 - a^2} } \equiv \dfrac {-1} {a^2 x} + \dfrac x {a^2 \paren {x^2 - a^2} }$


Proof

\(\ds \dfrac 1 {x \paren {x^2 - a^2} }\) \(\equiv\) \(\ds \dfrac A x + \dfrac {B x + C} {x^2 - a^2}\)
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds 1\) \(\equiv\) \(\ds A \paren {x^2 - a^2} + B x^2 + C x\) multiplying through by $x \paren {x^2 - a^2}$


Setting $x = 0$ in $(1)$:

\(\ds -A a^2\) \(=\) \(\ds 1\)
\(\ds \leadsto \ \ \) \(\ds A\) \(=\) \(\ds \frac {-1} {a^2}\)


Equating coefficients of $x^2$ in $(1)$:

\(\ds 0\) \(=\) \(\ds A + B\)
\(\ds \leadsto \ \ \) \(\ds B\) \(=\) \(\ds \frac 1 {a^2}\)


Equating coefficients of $x$ in $(1)$:

\(\ds 0\) \(=\) \(\ds C\)


Summarising:

\(\ds A\) \(=\) \(\ds \frac {-1} {a^2}\)
\(\ds B\) \(=\) \(\ds \frac 1 {a^2}\)
\(\ds C\) \(=\) \(\ds 0\)

Hence the result.

$\blacksquare$