Primitive of Reciprocal of x by x squared minus a squared squared

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {\d x} {x \paren {x^2 - a^2}^2} = \frac {-1} {2 a^2 \left({x^2 - a^2}\right)} + \frac 1 {2 a^4} \ln \left({\frac {x^2} {x^2 - a^2} }\right) + C$

for $x^2 > a^2$.


Proof

\(\ds \int \frac {\d x} {x \paren {x^2 - a^2}^2}\) \(=\) \(\ds \int \left({\frac 1 {a^4 x} + \frac {-x} {a^4 \paren {x^2 - a^2} } + \frac x {a^2 \paren {x^2 - a^2}^2} }\right) \rd x\) Partial Fraction Expansion
\(\ds \) \(=\) \(\ds \frac 1 {a^4} \int \frac {\d x} x + \frac {-1} {a^4} \int \frac {x \rd x} {x^2 - a^2} + \frac 1 {a^2} \int \frac {x \rd x} {\paren {x^2 - a^2}^2}\) Linear Combination of Primitives
\(\ds \) \(=\) \(\ds \frac 1 {a^4} \ln \size x + \frac {-1} {a^4} \int \frac {x \rd x} {x^2 - a^2} + \frac 1 {a^2} \int \frac {x \rd x} {\paren {x^2 - a^2}^2} + C\) Primitive of Reciprocal
\(\ds \) \(=\) \(\ds \frac 1 {a^4} \ln \size x + \frac {-1} {a^4} \paren {\frac 1 2 \map \ln {x^2 - a^2} } + \frac 1 {a^2} \int \frac {x \rd x} {\paren {x^2 - a^2}^2} + C\) Primitive of $\dfrac x {x^2 - a^2}$
\(\ds \) \(=\) \(\ds \frac 1 {a^4} \ln \size x + \frac {-1} {2 a^4} \map \ln {x^2 - a^2} + \frac 1 {a^2} \paren {\frac {-1} {2 \paren {x^2 - a^2} } } + C\) Primitive of $\dfrac x {\paren {x^2 - a^2}^2}$
\(\ds \) \(=\) \(\ds \frac 1 {2 a^4} \map \ln {x^2} + \frac {-1} {2 a^4} \map \ln {x^2 - a^2} + \frac 1 {a^2} \paren {\frac {-1} {2 \paren {x^2 - a^2} } } + C\) Logarithm of Power and $x^2 > 0$
\(\ds \) \(=\) \(\ds \frac {-1} {2 a^2 \paren {x^2 - a^2} } + \frac 1 {2 a^4} \map \ln {\frac {x^2} {x^2 - a^2} } + C\) Difference of Logarithms

$\blacksquare$


Also see


Sources