Primitive of Reciprocal of x cubed by x fourth plus a fourth

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {\d x} {x^3 \paren {x^4 + a^4} } = \frac {-1} {2 a^4 x^2} - \frac 1 {2 a^6} \arctan \frac {x^2} {a^2}$


Proof

\(\ds \int \frac {\d x} {x^3 \paren {x^4 + a^4} }\) \(=\) \(\ds \int \frac {a^4 \rd x} {a^4 x^3 \paren {x^4 + a^4} }\) multiplying top and bottom by $a^4$
\(\ds \) \(=\) \(\ds \int \frac {\paren {x^4 + a^4 - x^4} \rd x} {a^4 x^3 \paren {x^4 + a^4} }\)
\(\ds \) \(=\) \(\ds \frac 1 {a^4} \int \frac {\paren {x^4 + a^4} \rd x} {x^3 \paren {x^4 + a^4} } - \frac 1 {a^4} \int \frac {x^4 \rd x} {x^3 \paren {x^4 + a^4} }\) Linear Combination of Primitives
\(\ds \) \(=\) \(\ds \frac 1 {a^4} \int \frac {\d x} {x^3} - \frac 1 {a^4} \int \frac {x \rd x} {x^4 + a^4}\) simplifying
\(\ds \) \(=\) \(\ds \frac 1 {a^4} \paren {\frac {-1} {2 x} } - \frac 1 {a^4} \int \frac {x \rd x} {x^4 + a^4}\) Primitive of Power
\(\ds \) \(=\) \(\ds \frac {-1} {2 a^4 x^2} - \frac 1 {a^4} \paren {\frac 1 {2 a^2} \arctan \frac {x^2} {a^2} }\) Primitive of $\dfrac x {x^4 + a^4}$
\(\ds \) \(=\) \(\ds \frac {-1} {2 a^4 x^2} - \frac 1 {2 a^6} \arctan \frac {x^2} {a^2}\) simplifying

$\blacksquare$


Sources