Primitive of Reciprocal of x cubed by x squared plus a squared/Partial Fraction Expansion

From ProofWiki
Jump to navigation Jump to search

Lemma for Primitive of Reciprocal of $x^3 \paren {x^2 + a^2}$

$\dfrac 1 {x^3 \paren {x^2 + a^2} } \equiv \dfrac 1 {a^2 x^3} - \dfrac 1 {a^4 x} + \dfrac x {a^4 \paren {x^2 + a^2} }$


Proof

\(\ds \dfrac 1 {x^3 \paren {x^2 + a^2} }\) \(\equiv\) \(\ds \dfrac A x + \dfrac B {x^2} + \dfrac C {x^3} + \dfrac {D x + E} {x^2 + a^2}\)
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds 1\) \(\equiv\) \(\ds A x^2 \paren {x^2 + a^2} + B x \paren {x^2 + a^2} + C \paren {x^2 + a^2} + D x^4 + E x^3\) multiplying through by $x^3 \paren {x^2 + a^2}$


Setting $x = 0$ in $(1)$:

\(\ds C a^2\) \(=\) \(\ds 1\)
\(\ds \leadsto \ \ \) \(\ds C\) \(=\) \(\ds \frac 1 {a^2}\)


Equating coefficients of $x$ in $(1)$:

\(\ds 0\) \(=\) \(\ds B a^2\)
\(\ds \leadsto \ \ \) \(\ds B\) \(=\) \(\ds 0\)


Equating coefficients of $x^2$ in $(1)$:

\(\ds 0\) \(=\) \(\ds A a^2 + C\)
\(\ds \leadsto \ \ \) \(\ds A\) \(=\) \(\ds -\frac 1 {a^4}\)


Equating coefficients of $x^3$ in $(1)$:

\(\ds 0\) \(=\) \(\ds B + E\)
\(\ds \leadsto \ \ \) \(\ds E\) \(=\) \(\ds 0\)


Equating coefficients of $x^4$ in $(1)$:

\(\ds 0\) \(=\) \(\ds A + D\)
\(\ds \leadsto \ \ \) \(\ds D\) \(=\) \(\ds \frac 1 {a^4}\)


Summarising:

\(\ds A\) \(=\) \(\ds -\frac 1 {a^4}\)
\(\ds B\) \(=\) \(\ds 0\)
\(\ds C\) \(=\) \(\ds \frac 1 {a^2}\)
\(\ds D\) \(=\) \(\ds \frac 1 {a^4}\)
\(\ds E\) \(=\) \(\ds 0\)

Hence the result.

$\blacksquare$