Primitive of Reciprocal of x squared minus a squared/Logarithm Form 2/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {\d x} {x^2 - a^2} = \frac 1 {2 a} \ln \size {\frac {x - a} {x + a} } + C$


Proof

Let $x > a$.

Then:

\(\ds \int \frac {\d x} {x^2 - a^2}\) \(=\) \(\ds -\frac 1 a \arcoth {\frac x a} + C\) Primitive of Reciprocal of $x^2 - a^2$ in $\arcoth$ form
\(\ds \) \(=\) \(\ds -\frac 1 a \paren {\dfrac 1 2 \map \ln {\dfrac {x + a} {x - a} } } + C\) $\arcoth {\dfrac x a}$ in Logarithm Form
\(\ds \) \(=\) \(\ds -\frac 1 {2 a} \map \ln {\frac {x + a} {x - a} } + C\) simplifying
\(\ds \) \(=\) \(\ds \frac 1 {2 a} \map \ln {\frac {x - a} {x + a} } + C\) Logarithm of Reciprocal
\(\ds \) \(=\) \(\ds \frac 1 {2 a} \ln \size {\frac {x - a} {x + a} } + C\) as $\dfrac {x - a} {x + a} > 0$ for $x > a$


Let $x < -a$.

Let $z = -x$.

Then:

$\d x = -\d z$

and we then have:

\(\ds \int \frac {\d x} {x^2 - a^2}\) \(=\) \(\ds \int \frac {-\d z} {\paren {-z}^2 - a^2}\) Integration by Substitution
\(\ds \) \(=\) \(\ds -\int \frac {\d z} {z^2 - a^2}\) simplifying
\(\ds \) \(=\) \(\ds -\frac 1 {2 a} \map \ln {\frac {z - a} {z + a} } + C\) from above
\(\ds \) \(=\) \(\ds \frac 1 {2 a} \map \ln {\frac {z + a} {z - a} } + C\) Logarithm of Reciprocal
\(\ds \) \(=\) \(\ds \frac 1 {2 a} \map \ln {\frac {-x + a} {-x - a} } + C\) substituting $-x$ back for $z$
\(\ds \) \(=\) \(\ds \frac 1 {2 a} \map \ln {\frac {\size {x - a} } {\size {x + a} } } + C\) as $x < -a$
\(\ds \) \(=\) \(\ds \frac 1 {2 a} \ln \size {\frac {x - a} {x + a} } + C\)

The result follows.

$\blacksquare$