Primitive of Root of a squared minus x squared/Arccosine Form

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \sqrt {a^2 - x^2} \rd x = \frac {x \sqrt {a^2 - x^2} } 2 - \frac {a^2} 2 \arccos \frac x a + C$


Proof

Let:

\(\ds \int \sqrt {a^2 - x^2} \rd x\) \(=\) \(\ds \frac {x \sqrt {a^2 - x^2} } 2 + \frac {a^2} 2 \arcsin \frac x a + C\)
\(\ds \) \(=\) \(\ds \frac {x \sqrt {a^2 - x^2} } 2 + \paren {\dfrac \pi 2 - \frac {a^2} 2 \arcsin \frac x a} + C\) Sum of Arcsine and Arccosine
\(\ds \) \(=\) \(\ds \frac {x \sqrt {a^2 - x^2} } 2 - \frac {a^2} 2 \arccos \frac x a + C\) subsuming $\dfrac \pi 2$ into arbitrary constant $C$


$\blacksquare$


Also see


Sources