Primitive of Root of a x + b over Power of x
Jump to navigation
Jump to search
Theorem
Formulation 1
- $\ds \int \frac {\sqrt {a x + b} } {x^m} \rd x = -\frac {\sqrt {a x + b} } {\paren {m - 1} x^{m - 1} } + \frac a {2 \paren {m - 1} } \int \frac {\d x} {x^{m - 1} \sqrt {a x + b} }$
Formulation 2
- $\displaystyle \int \frac {\sqrt{a x + b} } {x^m} \ \mathrm d x = -\frac {\left({\sqrt{a x + b} }\right)^3} {\left({m - 1}\right) b x^{m-1} } - \frac {\left({2 m - 5}\right) a} {\left({2 m - 2}\right) b} \int \frac {\sqrt{a x + b} } {x^{m - 1} } \ \mathrm d x$