Primitive of x over Root of a x + b by Root of p x + q

From ProofWiki
Jump to navigation Jump to search

Theorem

$\displaystyle \int \frac {x \ \mathrm d x} {\sqrt{\left({a x + b}\right) \left({p x + q}\right)} } = \frac {\sqrt{\left({a x + b}\right) \left({p x + q}\right)} } {a p} - \frac {b p + a q} {2 a p} \int \frac {\mathrm d x} {\sqrt{\left({a x + b}\right) \left({p x + q}\right)} }$


Proof

Let:

\(\displaystyle u\) \(=\) \(\displaystyle \sqrt{a x + b}\)
\(\displaystyle \implies \ \ \) \(\displaystyle x\) \(=\) \(\displaystyle \frac {u^2 - b} a\)
\(\displaystyle \implies \ \ \) \(\displaystyle \sqrt{p x + q}\) \(=\) \(\displaystyle \sqrt{p \left({\frac {u^2 - b} a}\right) + q}\)
\(\displaystyle \) \(=\) \(\displaystyle \sqrt{\frac {p \left({u^2 - b}\right) + a q} a}\)
\(\displaystyle \) \(=\) \(\displaystyle \sqrt{\frac {p u^2 - b p + a q} a}\)
\((1):\quad\) \(\displaystyle \) \(=\) \(\displaystyle \sqrt {\frac p a} \sqrt{u^2 - \left({\frac {b p - a q} p}\right)}\)


Let $c^2 = \dfrac {b p - a q} p$.


Then:

\(\displaystyle \) \(\) \(\displaystyle \int \frac {x \ \mathrm d x} {\sqrt{\left({a x + b}\right) \left({p x + q}\right)} }\)
\(\displaystyle \) \(=\) \(\displaystyle \int \frac {2 u} a \left({\frac {u^2 - b} a}\right) \frac {\mathrm d u} {u \sqrt {\frac p a} \sqrt{u^2 - c^2} }\) Primitive of Function of Root of $a x + b$
\(\displaystyle \) \(=\) \(\displaystyle \frac 2 {a \sqrt {a p} } \int \frac {u^2 \ \mathrm d u} {\sqrt{u^2 - c^2} } - \frac {2 b} {a \sqrt {a p} } \int \frac {\mathrm d u} {\sqrt{u^2 - c^2} }\) Linear Combination of Integrals
\(\displaystyle \) \(=\) \(\displaystyle \frac 2 {a \sqrt {a p} } \left({\frac {u \sqrt{u^2 - c^2} } 2 + \frac {c^2} 2 \ln \left({u + \sqrt {u^2 - c^2} }\right) }\right)\) Primitive of $\dfrac {x^2}{\sqrt{x^2 - a^2} }$
\(\displaystyle \) \(=\) \(\, \displaystyle - \, \) \(\displaystyle \frac {2 b} {a \sqrt {a p} } \ln \left({u + \sqrt {u^2 - c^2} }\right)\) ... and Primitive of $\dfrac 1 {\sqrt{x^2 - a^2} }$: Logarithm Form
\(\displaystyle \) \(=\) \(\displaystyle \frac 2 {a \sqrt {a p} } \left({\frac {u \sqrt{u^2 - c^2} } 2 + \left({\frac {c^2} 2 - b}\right) \ln \left({u + \sqrt {u^2 - c^2} }\right) }\right)\) common factor
\(\displaystyle \) \(=\) \(\displaystyle \frac 2 {a \sqrt {a p} } \left({\frac {\sqrt{a x + b} \sqrt {\frac a p} \sqrt{p x + q} } 2 + \left({\frac {c^2} 2 - b}\right) \ln \left({\sqrt{a x + b} + \sqrt {\frac a p} \sqrt{p x + q} }\right)}\right)\) substituting for $u$, noting that $\sqrt{p x + q} = \sqrt {\frac p a} \sqrt{u^2 - c^2}$
\(\displaystyle \) \(=\) \(\displaystyle \frac {\sqrt{\left({a x + b}\right) \left({p x + q}\right)} } {a p} + \left({\frac {b p - a q} {a p \sqrt {a p} } - \frac {2 b} {a \sqrt {a p} } }\right) \ln \left({\frac {\sqrt {p \left({a x + b}\right)} + \sqrt {a \left({p x + q}\right)} } {\sqrt p} }\right)\) substituting for $c^2$ and simplifying
\(\displaystyle \) \(=\) \(\displaystyle \frac {\sqrt{\left({a x + b}\right) \left({p x + q}\right)} } {a p} + \left({\frac {b p - a q - 2 b p} {a p \sqrt {a p} } }\right) \ln \left({\frac {\sqrt {p \left({a x + b}\right)} + \sqrt {a \left({p x + q}\right)} } {\sqrt p} }\right)\) common denominator
\(\displaystyle \) \(=\) \(\displaystyle \frac {\sqrt{\left({a x + b}\right) \left({p x + q}\right)} } {a p} - \left({\frac {b p + a q} {a p \sqrt {a p} } }\right) \frac {\sqrt {a p} } 2 \int \frac {\mathrm d x} {\sqrt{\left({a x + b}\right) \left({p x + q}\right)} }\) Primitive of Reciprocal of $\sqrt{\left({a x + b}\right) \left({p x + q}\right)}$
\(\displaystyle \) \(=\) \(\displaystyle \frac {\sqrt{\left({a x + b}\right) \left({p x + q}\right)} } {a p} - \left({\frac {b p + a q} {2 a p} }\right) \int \frac {\mathrm d x} {\sqrt{\left({a x + b}\right) \left({p x + q}\right)} }\) simplifying

$\blacksquare$


Sources