Primitive of x over Root of a x + b by Root of p x + q
Jump to navigation
Jump to search
Theorem
- $\ds \int \frac {x \rd x} {\sqrt {\paren {a x + b} \paren {p x + q} } } = \frac {\sqrt {\paren {a x + b} \paren {p x + q} } } {a p} - \frac {b p + a q} {2 a p} \int \frac {\d x} {\sqrt {\paren {a x + b} \paren {p x + q} } }$
Proof
Let:
\(\ds u\) | \(=\) | \(\ds \sqrt {a x + b}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds x\) | \(=\) | \(\ds \frac {u^2 - b} a\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \sqrt {p x + q}\) | \(=\) | \(\ds \sqrt {p \paren {\frac {u^2 - b} a} + q}\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \sqrt {\frac {p \paren {u^2 - b} + a q} a}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sqrt {\frac {p u^2 - b p + a q} a}\) | ||||||||||||
\(\text {(1)}: \quad\) | \(\ds \) | \(=\) | \(\ds \sqrt {\frac p a} \sqrt {u^2 - \paren {\frac {b p - a q} p} }\) |
Let $c^2 = \dfrac {b p - a q} p$.
Then:
\(\ds \) | \(\) | \(\ds \int \frac {x \rd x} {\sqrt {\paren {a x + b} \paren {p x + q} } }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int \frac {2 u} a \paren {\frac {u^2 - b} a} \frac {\d u} {u \sqrt {\frac p a} \sqrt {u^2 - c^2} }\) | Primitive of Function of $\sqrt {a x + b}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 2 {a \sqrt {a p} } \int \frac {u^2 \rd u} {\sqrt {u^2 - c^2} } - \frac {2 b} {a \sqrt {a p} } \int \frac {\d u} {\sqrt {u^2 - c^2} }\) | Linear Combination of Primitives | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 2 {a \sqrt {a p} } \paren {\frac {u \sqrt {u^2 - c^2} } 2 + \frac {c^2} 2 \map \ln {u + \sqrt {u^2 - c^2} } }\) | Primitive of $\dfrac {x^2} {\sqrt {x^2 - a^2} }$ | |||||||||||
\(\ds \) | \(=\) | \(\, \ds - \, \) | \(\ds \frac {2 b} {a \sqrt {a p} } \map \ln {u + \sqrt {u^2 - c^2} }\) | ... and Primitive of $\dfrac 1 {\sqrt {x^2 - a^2} }$: Logarithm Form | ||||||||||
\(\ds \) | \(=\) | \(\ds \frac 2 {a \sqrt {a p} } \paren {\frac {u \sqrt {u^2 - c^2} } 2 + \paren {\frac {c^2} 2 - b} \map \ln {u + \sqrt {u^2 - c^2} } }\) | common factor | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 2 {a \sqrt {a p} } \paren {\frac {\sqrt {a x + b} \sqrt {\frac a p} \sqrt {p x + q} } 2 + \paren {\frac {c^2} 2 - b} \map \ln {\sqrt {a x + b} + \sqrt {\frac a p} \sqrt {p x + q} } }\) | substituting for $u$, noting that $\sqrt {p x + q} = \sqrt {\dfrac p a} \sqrt {u^2 - c^2}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\sqrt {\paren {a x + b} \paren {p x + q} } } {a p} + \paren {\frac {b p - a q} {a p \sqrt {a p} } - \frac {2 b} {a \sqrt {a p} } } \map \ln {\frac {\sqrt {p \paren {a x + b} } + \sqrt {a \paren {p x + q} } } {\sqrt p} }\) | substituting for $c^2$ and simplifying | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\sqrt {\paren {a x + b} \paren {p x + q} } } {a p} + \paren {\frac {b p - a q - 2 b p} {a p \sqrt {a p} } } \map \ln {\frac {\sqrt {p \paren {a x + b} } + \sqrt {a \paren {p x + q} } } {\sqrt p} }\) | common denominator | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\sqrt {\paren {a x + b} \paren {p x + q} } } {a p} - \paren {\frac {b p + a q} {a p \sqrt {a p} } } \frac {\sqrt {a p} } 2 \int \frac {\d x} {\sqrt {\paren {a x + b} \paren {p x + q} } }\) | Primitive of Reciprocal of $\sqrt {\paren {a x + b} \paren {p x + q} }$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\sqrt {\paren {a x + b} \paren {p x + q} } } {a p} - \paren {\frac {b p + a q} {2 a p} } \int \frac {\d x} {\sqrt {\paren {a x + b} \paren {p x + q} } }\) | simplifying |
$\blacksquare$
Although this article appears correct, it's inelegant. There has to be a better way of doing it. In particular: This is messy -- open to anyone else to write a better version You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by redesigning it. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Improve}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $\sqrt {a x + b}$ and $\sqrt {p x + q}$: $14.121$