Primitive of x over a x + b/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {x \rd x} {a x + b} = \frac x a - \frac b {a^2} \ln \size {a x + b} + C$


Proof

Put $u = a x + b$

Then:

\(\ds x\) \(=\) \(\ds \frac {u - b} a\)
\(\ds \frac {\d x} {\d u}\) \(=\) \(\ds \frac 1 a\)


Then:

\(\ds \int \frac {x \rd x} {a x + b}\) \(=\) \(\ds \int \frac 1 a \frac {u - b} {a u} \rd u\) Integration by Substitution
\(\ds \) \(=\) \(\ds \frac 1 {a^2} \int \rd u - \frac b {a^2} \int \frac {\d u} u\) Linear Combination of Primitives
\(\ds \) \(=\) \(\ds \frac u {a^2} + C - \frac b {a^2} \int \frac {\d u} u\) Primitive of Constant
\(\ds \) \(=\) \(\ds \frac u {a^2} - \frac b {a^2} \ln \size u + C\) Primitive of Reciprocal
\(\ds \) \(=\) \(\ds \frac {a x + b} {a^2} - \frac b {a^2} \ln \size {a x + b} + C\) substituting for $u$
\(\ds \) \(=\) \(\ds \frac x a + \frac b {a^2} - \frac b {a^2} \ln \size {a x + b} + C\) simplifying
\(\ds \) \(=\) \(\ds \frac x a - \frac b {a^2} \ln \size {a x + b} + C\) subsuming $\dfrac b {a^2}$ into the arbitrary constant $C$

$\blacksquare$