Primitive of x over a x + b/Proof 3

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {x \rd x} {a x + b} = \frac x a - \frac b {a^2} \ln \size {a x + b} + C$


Proof

\(\ds \int \frac {x \rd x} {a x + b}\) \(=\) \(\ds \int \frac 1 a \frac {a x \rd x} {a x + b}\)
\(\ds \) \(=\) \(\ds \int \frac 1 a \frac {\paren {a x + b - b} \rd x} {a x + b}\)
\(\ds \) \(=\) \(\ds \frac 1 a \int \frac {\paren {a x + b} \rd x} {a x + b} - \frac b a \int \frac {\d x} {a x + b}\) Linear Combination of Primitives
\(\ds \) \(=\) \(\ds \frac 1 a \int \d x - \frac b a \int \frac {\d x} {a x + b}\) simplification
\(\ds \) \(=\) \(\ds \frac x a - \frac b a \int \frac {\d x} {a x + b}\) Primitive of Constant
\(\ds \) \(=\) \(\ds \frac x a - \frac b {a^2} \ln \size {a x + b} + C\) Primitive of $\dfrac 1 {a x + b}$

$\blacksquare$