Primitive of x over x squared minus a squared
Jump to navigation
Jump to search
Theorem
- $\ds \int \frac {x \rd x} {x^2 - a^2} = \frac 1 2 \map \ln {x^2 - a^2} + C$
for $x^2 > a^2$.
Proof
Let:
\(\ds z\) | \(=\) | \(\ds x^2 - a^2\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d z} {\d x}\) | \(=\) | \(\ds 2 x\) | Power Rule for Derivatives | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int \frac {\d x} {x \paren {x^2 - a^2} }\) | \(=\) | \(\ds \int \frac {\d z} {2 z}\) | Integration by Substitution | ||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \int \frac {\d z} z\) | Primitive of Constant Multiple of Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \ln z + C\) | Primitive of Reciprocal: Corollary as $z > 0$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \map \ln {x^2 - a^2} + C\) | substituting for $z$ |
$\blacksquare$
Also see
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $x^2 - a^2$, $x^2 > a^2$: $14.145$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 17$: Tables of Special Indefinite Integrals: $(7)$ Integrals Involving $x^2 - a^2$, $x^2 > a^2$: $17.7.2.$