Primitive of x squared over a squared minus x squared/Inverse Hyperbolic Tangent Form

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {x^2 \rd x} {a^2 - x^2} = -x + a \tanh^{-1} \frac x a + C$

for $x^2 < a^2$.


Proof

Let:

\(\ds \int \frac {x^2 \rd x} {a^2 - x^2}\) \(=\) \(\ds \int \frac {x^2 - a^2 + a^2} {a^2 - x^2} \rd x\)
\(\ds \) \(=\) \(\ds \int \frac {-\paren {a^2 - x^2} } {a^2 - x^2} \rd x + \int \frac {a^2} {a^2 - x^2} \rd x\) Linear Combination of Primitives
\(\ds \) \(=\) \(\ds -\int \rd x + a^2 \int \frac {\rd x} {a^2 - x^2}\) Linear Combination of Primitives
\(\ds \) \(=\) \(\ds -x + a^2 \int \frac {\rd x} {a^2 - x^2} + C\) Primitive of Constant
\(\ds \) \(=\) \(\ds -x + a^2 \paren {\frac 1 a \tanh^{-1} \frac x a} + C\) Primitive of $\dfrac 1 {a^2 - x^2}$: $\tanh^{-1}$ form
\(\ds \) \(=\) \(\ds -x + a \tanh^{-1} \frac x a + C\) simplifying

$\blacksquare$