Primitive of x squared over x squared plus a squared squared/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {x^2 \rd x} {\paren {x^2 + a^2}^2} = \frac {-x} {2 \paren {x^2 + a^2} } + \frac 1 {2 a} \arctan \frac x a + C$


Proof

\(\ds \int \frac {x^2 \rd x} {\paren {x^2 + a^2}^2}\) \(=\) \(\ds \int \frac {x^2 + a^2 - a^2} {\paren {x^2 + a^2}^2} \rd x\)
\(\ds \) \(=\) \(\ds \int \frac {x^2 + a^2} {\paren {x^2 + a^2}^2} \rd x - a^2 \int \frac {\d x} {\paren {x^2 + a^2}^2}\) Linear Combination of Primitives
\(\ds \) \(=\) \(\ds \int \frac {\d x} {x^2 + a^2} + a^2 \int \frac {\d x} {\paren {x^2 + a^2}^2}\) simplification
\(\ds \) \(=\) \(\ds \frac 1 a \arctan {\frac x a} + a^2 \int \frac {\d x} {\paren {x^2 + a^2}^2} + C\) Primitive of Reciprocal of $x^2 + a^2$
\(\ds \) \(=\) \(\ds \frac 1 a \arctan {\frac x a} + a^2 \paren {\frac x {2 a^2 \paren {x^2 + a^2} } + \frac 1 {2 a^3} \arctan \frac x a} + C\) Primitive of Reciprocal of $\paren {x^2 + a^2}^2$
\(\ds \) \(=\) \(\ds \frac {-x} {2 \paren {x^2 + a^2} } + \frac 1 {2 a} \arctan \frac x a + C\) simplifying

$\blacksquare$