Principle of Commutation/Formulation 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$p \implies \paren {q \implies r} \dashv \vdash q \implies \paren {p \implies r}$


This can of course be expressed as two separate theorems:

Forward Implication

$p \implies \left({q \implies r}\right) \vdash q \implies \left({p \implies r}\right)$

Reverse Implication

$q \implies \paren {p \implies r} \vdash p \implies \paren {q \implies r}$


Proof 1

Proof of Forward Implication

By the tableau method of natural deduction:

$p \implies \paren {q \implies r} \vdash q \implies \paren {p \implies r} $
Line Pool Formula Rule Depends upon Notes
1 1 $p \implies \paren {q \implies r}$ Premise (None)
2 2 $q$ Assumption (None)
3 3 $p$ Assumption (None)
4 1, 3 $q \implies r$ Modus Ponendo Ponens: $\implies \mathcal E$ 1, 3
5 1, 2, 3 $r$ Modus Ponendo Ponens: $\implies \mathcal E$ 2, 4
6 1, 2 $p \implies r$ Rule of Implication: $\implies \II$ 3 – 5 Assumption 3 has been discharged
7 1 $q \implies \paren {p \implies r}$ Rule of Implication: $\implies \II$ 2 – 6 Assumption 2 has been discharged

$\blacksquare$


Proof of Reverse Implication

By the tableau method of natural deduction:

$q \implies \left({p \implies r}\right) \vdash p \implies \left({q \implies r}\right)$
Line Pool Formula Rule Depends upon Notes
1 1 $q \implies \left({p \implies r}\right)$ Premise (None)
2 2 $p$ Assumption (None)
3 3 $q$ Assumption (None)
4 1, 3 $p \implies r$ Modus Ponendo Ponens: $\implies \mathcal E$ 1, 3
5 1, 2, 3 $r$ Modus Ponendo Ponens: $\implies \mathcal E$ 2, 4
6 1, 2 $q \implies r$ Rule of Implication: $\implies \II$ 3 – 5 Assumption 3 has been discharged
7 1 $p \implies \left({q \implies r}\right)$ Rule of Implication: $\implies \II$ 2 – 6 Assumption 2 has been discharged

$\blacksquare$


Proof 2

We apply the Method of Truth Tables to the proposition.

As can be seen by inspection, the truth values under the main connectives match for all boolean interpretations.


$\begin{array}{|ccccc||ccccc|} \hline p & \implies & (q & \implies & r) & q & \implies & (p & \implies & r) \\ \hline F & T & F & T & F & F & T & F & T & F \\ F & T & F & T & T & F & T & F & T & T \\ F & T & T & F & F & T & T & F & T & F \\ F & T & T & T & T & T & T & F & T & T \\ T & T & F & T & F & F & T & T & F & F \\ T & T & F & T & T & F & T & T & T & T \\ T & F & T & F & F & T & F & T & F & F \\ T & T & T & T & T & T & T & T & T & T \\ \hline \end{array}$

$\blacksquare$