Product of Sines of Fractions of Pi

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $m \in \Z$ such that $m > 1$.


Then:

$\ds \prod_{k \mathop = 1}^{m - 1} \sin \frac {k \pi} m = \frac m {2^{m - 1} }$


Proof

Consider the equation:

$z^m - 1 = 0$

whose solutions are the complex roots of unity:

$1, e^{2 \pi i / m}, e^{4 \pi i / m}, e^{6 \pi i / m}, \ldots, e^{2 \paren {m - 1} \pi i / m}$


Then:

\(\ds z^m - 1\) \(=\) \(\ds \paren {z - 1} \paren {z - e^{2 \pi i / m} } \paren {z - e^{4 \pi i / m} } \dotsm \paren {z - e^{2 \paren {m - 1} \pi i / m} }\) product of all the roots
\(\ds \leadsto \ \ \) \(\ds \frac {z^m - 1} {z - 1}\) \(=\) \(\ds \prod_{k \mathop = 1}^{m - 1} \paren {z - e^{2 k \pi i / m} }\) dividing by $z - 1$
\(\ds \leadsto \ \ \) \(\ds 1 + z + \dotsb + z^{m-1}\) \(=\) \(\ds \prod_{k \mathop = 1}^{m - 1} \paren {z - e^{2 k \pi i / m} }\) Sum of Geometric Sequence
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds m\) \(=\) \(\ds \prod_{k \mathop = 1}^{m - 1} \paren {1 - e^{2 k \pi i / m} }\) setting $z = 1$
\(\text {(2)}: \quad\) \(\ds \leadsto \ \ \) \(\ds m\) \(=\) \(\ds \prod_{k \mathop = 1}^{m - 1} \paren {1 - e^{-2 k \pi i / m} }\) taking complex conjugate of both sides
\(\ds \leadsto \ \ \) \(\ds m^2\) \(=\) \(\ds \prod_{k \mathop = 1}^{m - 1} \paren {\paren {1 - e^{2 k \pi i / m} } \paren {1 - e^{-2 k \pi i / m} } }\) multiplying $(1)$ by $(2)$
\(\ds \leadsto \ \ \) \(\ds m^2\) \(=\) \(\ds \prod_{k \mathop = 1}^{m - 1} \paren {1 - e^{2 k \pi i / m} - e^{-2 k \pi i / m} + 1}\) multiplying out
\(\ds \leadsto \ \ \) \(\ds m^2\) \(=\) \(\ds \prod_{k \mathop = 1}^{m - 1} \paren {2 - 2 \frac {e^{2 k \pi i / m} + e^{-2 k \pi i / m} } 2}\) rearranging
\(\ds \leadsto \ \ \) \(\ds m^2\) \(=\) \(\ds \prod_{k \mathop = 1}^{m-1} \paren {2 - 2 \cos \frac {2 k \pi} m}\) Euler's Cosine Identity
\(\ds \leadsto \ \ \) \(\ds m^2\) \(=\) \(\ds 2^{m - 1} \prod_{k \mathop = 1}^{m - 1} \paren {1 - \cos \frac {2 k \pi} m}\) factoring out $m - 1$ instances of $2$
\(\ds \leadsto \ \ \) \(\ds m^2\) \(=\) \(\ds 2^{m - 1} \prod_{k \mathop = 1}^{m - 1} \paren {2 \sin^2 \frac {k \pi} m}\) Double Angle Formula for Cosine: Corollary $2$
\(\ds \leadsto \ \ \) \(\ds \frac {m^2} {2^{2 m - 2} }\) \(=\) \(\ds \prod_{k \mathop = 1}^{m - 1} \paren {\sin^2 \frac {k \pi} m}\) factoring out another $m - 1$ instances of $2$
\(\ds \leadsto \ \ \) \(\ds \frac m {2^{m - 1} }\) \(=\) \(\ds \prod_{k \mathop = 1}^{m - 1} \paren {\sin \frac {k \pi} m}\) taking square root of both sides

$\blacksquare$


Also presented as

Some sources prefer to report this result as:

$\ds \prod_{k \mathop = 1}^{m - 1} \sin \frac {k \pi} m = \frac {2 m} {2^m}$

on the grounds that it may be easier to remember.


Sources