Product is Right Identity Therefore Right Cancellable
Jump to navigation
Jump to search
Theorem
Let $\struct {S, \circ}$ be a semigroup.
Let $e_R \in S$ be a right identity of $S$.
Let $a \in S$ such that:
- $\exists b \in S: a \circ b = e_R$
Then $a$ is right cancellable in $\struct {S, \circ}$.
Proof
Let $x, y \in S$ be arbitrary.
Then:
\(\ds x \circ a\) | \(=\) | \(\ds y \circ a\) | Semigroup Axiom $\text S 0$: Closure | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {x \circ a} \circ b\) | \(=\) | \(\ds \paren {y \circ a} \circ b\) | Semigroup Axiom $\text S 0$: Closure | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds x \circ \paren {a \circ b}\) | \(=\) | \(\ds y \circ \paren {a \circ b}\) | Semigroup Axiom $\text S 1$: Associativity | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds x \circ e_R\) | \(=\) | \(\ds y \circ e_R\) | by hypothesis | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds x\) | \(=\) | \(\ds y\) | Definition of Right Identity |
The result follows by definition of right cancellable.
$\blacksquare$