Product of Affine Spaces is Affine Space

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\EE, \FF$ be affine spaces.

Let $\GG = \EE \times \FF$ be the product of $\EE$ and $\FF$.


Then $\GG$ is an affine space.


Proof

Let $G = \vec \GG$ be the difference space of $\GG$.

We are required to show that the following axioms are satisfied:

\((1)\)   $:$     \(\ds \forall p, q \in \GG:\) \(\ds p + \paren {q - p} = q \)      
\((2)\)   $:$     \(\ds \forall p \in \GG: \forall u, v \in G:\) \(\ds \paren {p + u} + v = p + \paren {u + v} \)      
\((3)\)   $:$     \(\ds \forall p, q \in \GG: \forall u \in G:\) \(\ds \paren {p - q} + u = \paren {p + u} - q \)      


Proof of $(1)$:

Let $p = \tuple {p', p' '}, q = \tuple {q', q' '} \in \GG$.


We have:

\(\ds p + \paren {q - p}\) \(=\) \(\ds \tuple {p', p' '} + \paren {\tuple {q', q' '} - \tuple {p', p' '} }\)
\(\ds \) \(=\) \(\ds \tuple {p', p' '} + \tuple {q' - p', q' ' - p' '}\) Definition of $-$ in Product Space
\(\ds \) \(=\) \(\ds \tuple {p' + \paren {q' - p'}, p' ' + \paren {q' ' - p' '} }\) Definition of $+$ in Product Space
\(\ds \) \(=\) \(\ds \tuple {q' , q' '}\) Axiom $(1)$ in Affine Spaces $\EE$, $\FF$

$\Box$


Proof of $(2)$:

Let $p = \tuple {p', p' '} \in \GG$.

Let $u = \tuple {u', u' '}, v = \tuple {v', v' '} \in G$.


We have:

\(\ds \paren {p + u} + v\) \(=\) \(\ds \paren {\tuple {p', p' '} + \tuple {u', u' '} } + \tuple {v', v' '}\)
\(\ds \) \(=\) \(\ds \tuple {p' + u', p' ' + u' '} + \tuple {v', v' '}\) Definition of $+$ in Product Space
\(\ds \) \(=\) \(\ds \tuple {\paren {p' + u'} + v', \paren {p' ' + u' '} + v' '}\) Definition of $+$ in Product Space
\(\ds \) \(=\) \(\ds \tuple {p' + \paren {u' + v'}, p' ' + \paren {u' ' + v' '} }\) Axiom $(2)$ in Affine Spaces $\EE$, $\FF$
\(\ds \) \(=\) \(\ds \tuple {p', p' '} + \paren {\tuple {u', u' '} + \tuple {v', v' '} }\) Definition of $+$ in Product Space
\(\ds \) \(=\) \(\ds p + \paren {u + v}\)

$\Box$


Proof of $(3)$:

Let $p = \tuple {p', p' '}, q = \tuple {q', q' '} \in \GG$.

Let $u = \tuple {u', u' '} \in G$.


We have:

\(\ds \paren {p - q} + u\) \(=\) \(\ds \paren {\tuple {p', p' '} - \tuple {q', q' '} } + \tuple {u', u' '}\)
\(\ds \) \(=\) \(\ds \tuple {\paren {p' - q'} + u', \paren {p' ' - q' '} + u' '}\) Definition of $+,-$ in Product Space
\(\ds \) \(=\) \(\ds \tuple {\paren {p' + u'} - q', \paren {p' ' + u' '} - q' '}\) Axiom $(3)$ in Affine Spaces $\EE$, $\FF$
\(\ds \) \(=\) \(\ds \paren {\tuple {p', p' '} + \tuple {u', u' '} } - \tuple {q', q' '}\) Definition of $+,-$ in Product Space
\(\ds \) \(=\) \(\ds \paren {p - q} + u\)

$\blacksquare$