Product of Coprime Numbers whose Sigma is Square has Square Sigma
Jump to navigation
Jump to search
Theorem
Let $m, n \in \Z_{>0}$ be a positive integer.
Let the $\sigma$ value of $m$ and $n$ both be square.
Let $m$ and $n$ be coprime.
Then the $\sigma$ value of $m n$ is square.
Proof
Let $\sigma \left({m}\right) = k^2$.
Let $\sigma \left({n}\right) = l^2$.
Thus:
\(\displaystyle \sigma \left({m n}\right)\) | \(=\) | \(\displaystyle \sigma \left({m}\right) \sigma \left({n}\right)\) | Sigma Function is Multiplicative | ||||||||||
\(\displaystyle \) | \(=\) | \(\displaystyle k^2 l^2\) | from above | ||||||||||
\(\displaystyle \) | \(=\) | \(\displaystyle \left({k l}\right)^2\) | from above |
$\blacksquare$