Product of Negative with Product Inverse

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {R, +, \circ}$ be a ring with unity.

Let $z \in U_R$, where $U_R$ is the set of units.

Then:

$(1): \quad \forall x \in R: -\paren {x \circ z^{-1} } = \paren {-x} \circ z^{-1} = x \circ \paren {\paren {-z}^{-1} }$
$(2): \quad \forall x \in R: -\paren {z^{-1} \circ x} = z^{-1} \circ \paren {-x} = \paren {\paren {-z}^{-1} } \circ x$


Proof

\(\text {(1)}: \quad\) \(\ds -\paren {x \circ z^{-1} }\) \(=\) \(\ds \paren {-x} \circ z^{-1}\) Product with Ring Negative
\(\ds \) \(=\) \(\ds x \circ \paren {-\paren {z^{-1} } }\) Product with Ring Negative
\(\ds \) \(=\) \(\ds x \circ \paren {\paren {-z}^{-1} }\) Negative of Product Inverse

$\Box$


\(\text {(2)}: \quad\) \(\ds -\paren {z^{-1} \circ x}\) \(=\) \(\ds z^{-1} \circ \paren {-x}\) Product with Ring Negative
\(\ds \) \(=\) \(\ds \paren {-\paren {z^{-1} } } \circ x\) Product with Ring Negative
\(\ds \) \(=\) \(\ds \paren {\paren {-z}^{-1} } \circ x\) Negative of Product Inverse

$\blacksquare$


Sources