Product of Number by its Rising Factorial

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x^{\overline n}$ denote the $n$th rising factorial power of $x$.

Then:

$x x^{\overline n} = x^{\overline {n + 1} } - n x^{\overline n}$


Proof

\(\ds x x^{\overline n}\) \(=\) \(\ds \paren {x + n - n} x^{\overline n}\)
\(\ds \) \(=\) \(\ds \paren {x + n} x^{\overline n} - n x^{\overline n}\)
\(\ds \) \(=\) \(\ds \paren {x + n} \prod_{j \mathop = 0}^{n - 1} \paren {x + j} - n x^{\overline n}\) Definition of Rising Factorial
\(\ds \) \(=\) \(\ds \prod_{j \mathop = 0}^n \paren {x + j} - n x^{\overline n}\) Definition of Continued Product
\(\ds \) \(=\) \(\ds x^{\overline {n + 1} } - n x^{\overline n}\) Definition of Rising Factorial

$\blacksquare$