Product of Products

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $R: \Z \to \set {\T, \F}$ be a propositional function on the set of integers.

Let $\ds \prod_{R \paren i} x_i$ denote a continued product over $R$.


Let the fiber of truth of $R$ be finite.

Then:

$\ds \prod_{R \paren i} \paren {b_i c_i} = \paren {\prod_{R \paren i} b_i} \paren {\prod_{R \paren i} c_i}$


Proof

Let $b_i =: a_{i 1}$ and $c_i =: a_{i 2}$.

Then:

\(\ds \prod_{R \paren i} \paren {b_i c_i}\) \(=\) \(\ds \prod_{R \paren i} \paren {a_{i 1} a_{i 2} }\) by definition
\(\ds \) \(=\) \(\ds \prod_{R \paren i} \paren {\prod_{1 \mathop \le j \mathop \le 2} a_{i j} }\) Definition of Continued Product by Propositional Function
\(\ds \) \(=\) \(\ds \prod_{1 \mathop \le j \mathop \le 2} \paren {\prod_{R \paren i} a_{i j} }\) Exchange of Order of Product
\(\ds \) \(=\) \(\ds \paren {\prod_{R \paren i} a_{i 1} } \paren {\prod_{R \paren i} a_{i 2} }\) Definition of Continued Product by Propositional Function
\(\ds \) \(=\) \(\ds \paren {\prod_{R \paren i} b_i} \paren {\prod_{R \paren i} c_i}\) by definition

$\blacksquare$


Sources