Product of Roots of Quadratic Equation
Jump to navigation
Jump to search
Theorem
Let $P$ be the quadratic equation $a x^2 + b x + c = 0$.
Let $\alpha$ and $\beta$ be the roots of $P$.
Then:
- $\alpha \beta = \dfrac c a$
Proof
\(\ds \alpha\) | \(=\) | \(\ds \frac {-b + \sqrt {b^2 - 4 a c} } {2 a}\) | Solution to Quadratic Equation | |||||||||||
\(\ds \beta\) | \(=\) | \(\ds \frac {-b - \sqrt {b^2 - 4 a c} } {2 a}\) | Without loss of generality, selecting $\alpha$ and $\beta$ as such | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \alpha \beta\) | \(=\) | \(\ds \frac {\paren {-b - \sqrt {b^2 - 4 a c} } \paren {- b + \sqrt {b^2 - 4 a c} } } {4 a^2}\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {b^2 - \paren {b^2 - 4 a c} } {4 a^2}\) | Difference of Two Squares | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {4 a c} {4 a^2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac c a\) |
$\blacksquare$
Also see
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 9$: Solutions of Algebraic Equations: $9.2$: Quadratic Equation
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): quadratic equation