Product of Sums/Corollary
Jump to navigation
Jump to search
Corollary to Product of Sums
Let $\displaystyle \sum_{i \mathop \in X} a_{ij}$ be absolutely convergent sequences for all $j \in Y$.
Then:
- $\displaystyle \prod_{j \mathop \in Y} \left({\sum_{i \mathop \in X} a_{ij}}\right) = \sum_{f: Y \mathop \to X} \left( \prod_{j \mathop \in Y} a_{f \left({j}\right) j} \right)$
where $f$ runs over all mappings from $Y$ to $X$.
Proof
We will prove the case $X = Y = \N$ to avoid the notational inconvenience of enumerating the elements of $Y$ as $j_1, j_2, j_3 \dots$.
The general case where $X, Y$ are arbitrary sets has the same proof, but with more indices and notational distractions.
Consider that by the main theorem:
- $\displaystyle \prod_{j \mathop = 1, 2} \left({\sum_{i \mathop \in \N} a_{ij} }\right) = \sum_{x, y \mathop \in \N} a_{x_1}a_{y_2}$
and continuing in this vein:
- $\displaystyle \prod_{j \mathop = 1, 2, 3} \left({\sum_{i \mathop \in \N} a_{ij} }\right) = \left({\sum_{x, y \mathop \in \N} a_{x_1} a_{y_2} }\right) \left({\sum_{z \mathop \in \N} a_{z_3} }\right) = \sum_{x, y, z \mathop \in \N} a_{x_1} a_{y_2} a_{z_3}$
For an inductive proof of this concept for finite $n$, we assume that for some $n \in \N$:
- $\displaystyle \prod_{j \mathop = 1}^n \left({ \sum_{i \mathop \in \N} a_{ij} }\right) = \sum_{u, v, \dots, x, y \mathop \in \N} a_{u_1} a_{v_2}\dots a_{x_{(n-1)}} a_{y_n}$
Then:
- $\displaystyle \prod_{j \mathop = 1}^{n+1} \left({ \sum_{i \mathop \in \N} a_{ij} }\right) = \left({ \sum_{u, v, \dots, x, y \mathop \in \N} a_{u_1} a_{v_2}\dots a_{x_{(n-1)}} a_{y_n} }\right) \left({\sum_{z \mathop \in \N} a_{z_n} }\right)$
which by Product of Sums is simply:
- $\displaystyle \sum_{u, v, \ldots, x, y, z \mathop \in \N} a_{u_1} a_{v_2} \ldots a_{x_{(n-1}} a_{y_n} a_{z_{(n+1)}}$
completing the induction for finite $n$.