Product of Supremum and Infimum in Lattice-Ordered Group
Jump to navigation
Jump to search
Theorem
Let $\struct {G, \odot}$ be a group.
Let $\preccurlyeq$ be a lattice ordering on $G$.
Let $x, y \in G$ such that $x$ commutes with $y$.
Then:
- $\sup \set {x, y} \odot \inf \set {x, y} = x \odot y$
Proof
First we show that $x$ commutes with $\sup \set {x, y}$.
Indeed:
\(\ds x \odot \sup \set {x, y}\) | \(=\) | \(\ds \sup \set {x \odot x, x \odot y}\) | Suprema in Ordered Group | |||||||||||
\(\ds \) | \(=\) | \(\ds \sup \set {x \odot x, y \odot x}\) | as $x$ and $y$ commute | |||||||||||
\(\ds \) | \(=\) | \(\ds \sup \set {x, y} \odot x\) | Suprema in Ordered Group |
Similarly:
- $y$ commutes with $\sup \set {x, y}$
Then using Infima in Ordered Group in the same way as above:
Then we have:
\(\ds x \odot \paren {\sup \set {x, y} }^{-1} \odot y\) | \(=\) | \(\ds x \odot \inf \set {x^{-1}, y^{-1} } \odot y\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \inf \set {x \odot x^{-1} \odot y, x \odot y^{-1} \odot y}\) | Inverse of Supremum in Ordered Group is Infimum of Inverses | |||||||||||
\(\ds \) | \(=\) | \(\ds \inf \set {y, x}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \inf \set {x, y}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds x \odot y \odot \paren {\sup \set {x, y} }^{-1}\) | \(=\) | \(\ds \inf \set {x, y}\) | from the commutativity proved a priori | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds x \odot y\) | \(=\) | \(\ds \sup \set {x, y} \odot \inf \set {x, y}\) |
$\blacksquare$
Sources
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): Chapter $\text {III}$: The Natural Numbers: $\S 15$: Ordered Semigroups: Exercise $15.11$