Product of r Choose k with r Minus Half Choose k/Formulation 1/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $k \in \Z$, $r \in \R$.

$\dbinom r k \dbinom {r - \frac 1 2} k = \dfrac {\dbinom {2 r} k \dbinom {2 r - k} k} {4^k}$

where $\dbinom r k$ denotes a binomial coefficient.


Proof

From Binomial Coefficient expressed using Beta Function:

$(1): \quad \dbinom r k \dbinom {r - \frac 1 2} k = \dfrac 1 {\paren {r + 1} \map \Beta {k + 1, r - k + 1} \paren {r + \frac 1 2} \map \Beta {k + 1, r - k + \frac 1 2} }$


Then:

\(\ds \dbinom r {k + 1} \dbinom {r - \frac 1 2} {k + 1}\) \(=\) \(\ds \dfrac 1 {\paren {r + 1} \map \Beta {k + 2, r - k} \paren {r + \frac 1 2} \map \Beta {k + 2, r - k - \frac 1 2} }\)
\(\ds \) \(=\) \(\ds \dfrac 1 {\paren {r + 1} \frac {k + 1} {r + 1} \map \Beta {k + 1, r - k} \paren {r + \frac 1 2} \frac {k + 1} {r + \frac 1 2} \map \Beta {k + 1, r - k - \frac 1 2} }\) Beta Function of $x$ with $y+1$ by $\dfrac {x+y} y$
\(\ds \) \(=\) \(\ds \dfrac 1 {\paren {r + 1} \frac {k + 1} {r + 1} \frac {r + 1} {r - k} \map \Beta {k + 1, r - k + 1} \paren {r + \frac 1 2} \frac {k + 1} {r + \frac 1 2} \frac {r + \frac 1 2} {r - k - \frac 1 2} \map \Beta {k + 1, r - k + \frac 1 2} }\) Beta Function of $x$ with $y+1$ by $\dfrac {x+y} y$
\(\ds \) \(=\) \(\ds \dfrac {\paren {r - k} \paren {r - k - \frac 1 2} } {\paren {k + 1}^2} \times \frac 1 {\paren {r + 1} \map \Beta {k + 1, r - k + 1} \paren {r + \frac 1 2} \map \Beta {k + 1, r - k + \frac 1 2} }\) simplifying
\(\text {(2)}: \quad\) \(\ds \) \(=\) \(\ds \dfrac {\paren {r - k} \paren {r - k - \frac 1 2} } {\paren {k + 1}^2} \dbinom r k \dbinom {r - \frac 1 2} k\) from $(1)$


Again from Binomial Coefficient expressed using Beta Function:

$(3): \quad \dbinom {2 r} k \dbinom {2 r - k} k = \dfrac 1 {\paren {2 r + 1} \map \Beta {k + 1, 2 r - k + 1} \paren {2 r - k + 1} \map \Beta {k + 1, 2 r - 2 k + 1} }$


Then:

\(\ds \dbinom {2 r} {k + 1} \dbinom {2 r - k - 1} {k + 1}\) \(=\) \(\ds \dfrac 1 {\paren {2 r + 1} \map \Beta {k + 2, 2 r - k} \paren {2 r - k} \map \Beta {k + 2, 2 r - 2 k - 1} }\)
\(\ds \) \(=\) \(\ds \dfrac 1 {\paren {2 r + 1} \frac {k + 1} {2 r + 1} \map \Beta {k + 1, 2 r - k} \paren {2 r - k} \frac {k + 1} {2 r - k} \map \Beta {k + 1, 2 r - 2 k - 1} }\) Beta Function of $x$ with $y+1$ by $\dfrac {x+y} y$
\(\ds \) \(=\) \(\ds \dfrac 1 {\paren {k + 1}^2 \map \Beta {k + 1, 2 r - k} \map \Beta {k + 1, 2 r - 2 k - 1} }\) simplification
\(\ds \) \(=\) \(\ds \dfrac 1 {\paren {k + 1}^2 \frac {2 r + 1} {2 r - k} \map \Beta {k + 1, 2 r - k + 1} \frac {2 r - k} {2 r - 2 k - 1} \map \Beta {k + 1, 2 r - 2 k} }\) Beta Function of $x$ with $y+1$ by $\dfrac {x+y} y$
\(\ds \) \(=\) \(\ds \dfrac {\paren {2 r - 2 k - 1} } {\paren {k + 1}^2 \paren {2 r + 1} \map \Beta {k + 1, 2 r - k + 1} \map \Beta {k + 1, 2 r - 2 k} }\) simplifying
\(\ds \) \(=\) \(\ds \dfrac {\paren {2 r - 2 k - 1} } {\paren {k + 1}^2 \paren {2 r + 1} \map \Beta {k + 1, 2 r - k + 1} \frac {2 r - k + 1} {2 r - 2 k} \map \Beta {k + 1, 2 r - 2 k + 1} }\) Beta Function of $x$ with $y+1$ by $\dfrac {x+y} y$
\(\ds \) \(=\) \(\ds \dfrac {\paren {2 r - 2 k - 1} \paren {2 r - 2 k} } {\paren {k + 1}^2} \times \frac 1 {\paren {2 r + 1} \map \Beta {k + 1, 2 r - k + 1} \paren {2 r - k + 1} \map \Beta {k + 1, 2 r - 2 k + 1} }\) simplifying
\(\ds \) \(=\) \(\ds \dfrac {\paren {2 r - 2 k} \paren {2 r - 2 k - 1} } {\paren {k + 1}^2} \dbinom {2 r} k \dbinom {2 r - k} k\) from $(3)$
\(\ds \) \(=\) \(\ds \dfrac {4 \paren {r - k} \paren {r - k - \frac 1 2} } {\paren {k + 1}^2} \dbinom {2 r} k \dbinom {2 r - k} k\)