Product of r Choose m with m Choose k/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\dbinom r m \dbinom m k = \dbinom r k \dbinom {r - k} {m - k}$


Proof

Consider the trinomial coefficient:

$\dbinom r {k, m - k, r - m}$


We use Multinomial Coefficient expressed as Product of Binomial Coefficients:

$\dbinom {k_1 + k_2 + k_3} {k_1, k_2, k_3} = \dbinom {k_1 + k_2} {k_1} \dbinom {k_1 + k_2 + k_3} {k_1 + k_2}$

and substitute as appropriate for $k_1, k_2, k_3$.


We have:

\(\ds \) \(\) \(\ds \dbinom r {k, m - k, r - m}\)
\(\ds \) \(=\) \(\ds \dbinom {\left({m - k}\right) + \left({r - m}\right) + k} {m - k, r - m, k}\)
\(\ds \) \(=\) \(\ds \dbinom {\left({m - k}\right) + \left({r - m}\right)} {m - k} \dbinom {\left({m - k}\right) + \left({r - m}\right) + k} {\left({m - k}\right) + \left({r - m}\right)}\) Multinomial Coefficient expressed as Product of Binomial Coefficients
\(\ds \) \(=\) \(\ds \dbinom {r - k} {m - k} \dbinom r m\)


Similarly:

\(\ds \) \(\) \(\ds \dbinom r {k, m - k, r - m}\)
\(\ds \) \(=\) \(\ds \dbinom {k + \left({m - k}\right) + \left({r - m}\right)} {k, m - k, r - m}\)
\(\ds \) \(=\) \(\ds \dbinom {k + \left({m - k}\right)} k \dbinom {k + \left({m - k}\right) + \left({r - m}\right)} {\left({m - k}\right) + k}\) Multinomial Coefficient expressed as Product of Binomial Coefficients
\(\ds \) \(=\) \(\ds \dbinom m k \dbinom r m\)

$\blacksquare$


The result follows on equating the two expressions.


Sources