Product with Inverse equals Identity iff Equality

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {G, \circ}$ be a group whose identity element is $e$.

Then:

$\forall a, b \in G: a \circ b^{-1} = e \iff a = b$


Proof

Using various properties of groups:


\(\ds a \circ b^{-1}\) \(=\) \(\ds e\)
\(\ds \leadstoandfrom \ \ \) \(\ds \paren {a \circ b^{-1} } \circ b\) \(=\) \(\ds e \circ b\) Cancellation Laws
\(\ds \leadstoandfrom \ \ \) \(\ds a \circ \paren {b^{-1} \circ b}\) \(=\) \(\ds e \circ b\) Group Axiom $\text G 1$: Associativity
\(\ds \leadstoandfrom \ \ \) \(\ds a\) \(=\) \(\ds b\) Group Axiom $\text G 2$: Existence of Identity Element and Group Axiom $\text G 3$: Existence of Inverse Element

$\blacksquare$