Properties of Norm on Division Ring/Norm of Difference

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {R, +, \circ}$ be a division ring.

Let $\norm {\,\cdot\,}$ be a norm on $R$.

Let $x, y \in R$.


Then:

$\norm {x - y} \le \norm x + \norm y$


Proof

Then:

\(\ds \norm {x - y}\) \(=\) \(\ds \norm {x + \paren {-y} }\)
\(\ds \) \(\le\) \(\ds \norm x + \norm {-y}\) Norm Axiom $\text N 3$: Triangle Inequality
\(\ds \) \(=\) \(\ds \norm x + \norm y\) Norm of Ring Negative

as desired.

$\blacksquare$


Sources