# Properties of Relation Compatible with Group Operation

Jump to navigation
Jump to search

## Contents

## Theorem

Let $\left({G,\circ}\right)$ be a group with identity element $e$.

Let $\mathcal R$ be a endorelation on $G$ which is compatible with $\circ$.

Let $x,y,z \in G$.

Then the following hold:

## CRG1

- $x \mathrel {\mathcal R} y \iff x \circ z \mathrel {\mathcal R} y \circ z$
- $x \mathrel {\mathcal R} y \iff z \circ x \mathrel {\mathcal R} z \circ y$

### Corollary: CRG2

- $(1): \quad x \mathrel {\mathcal R} y \iff e \mathrel {\mathcal R} y \circ x^{-1}$
- $(2): \quad x \mathrel {\mathcal R} y \iff e \mathrel {\mathcal R} x^{-1} \circ y$

- $(3): \quad x \mathrel {\mathcal R} y \iff x \circ y^{-1} \mathrel {\mathcal R} e$
- $(4): \quad x \mathrel {\mathcal R} y \iff y^{-1} \circ x \mathrel {\mathcal R} e$

## CRG3

- $x \mathrel{\mathcal R} y \iff y^{-1} \mathrel{\mathcal R} x^{-1}$

### Corollary: CRG4

- $x \mathrel{\mathcal R} e \iff e \mathrel{\mathcal R} x^{-1}$
- $e \mathrel{\mathcal R} x \iff x^{-1} \mathrel{\mathcal R} e$

### Relation Compatible with Group Operation is Reflexive or Antireflexive

Let $\left({G, \circ}\right)$ be a group.

Let $\mathcal R$ be a relation on $G$ that is compatible with $\circ$.

Then $\mathcal R$ is reflexive or antireflexive.