Pullback of Quotient Group Isomorphism is Subgroup
Theorem
Let $\struct {G, \circ}$ be a group whose identity element is $e_G$.
Let $\struct {H, *}$ be a group whose identity element is $e_H$.
Let $N \lhd G, K \lhd H$ be normal subgroups of $G$ and $H$ respectively.
Let:
- $G / N \cong H / K$
where:
- $G / N$ denotes the quotient of $G$ by $N$
- $\cong$ denotes group isomorphism.
Let $\theta: G / N \to H / K$ be such a group isomorphism.
Let $G \times^\theta H$ be the pullback of $G$ and $H$ via $\theta$.
Then $G \times^\theta H$ is a subgroup of $G \times H$.
Proof
This result is proved by an application of the Two-Step Subgroup Test:
Condition $(1)$
From the definition of pullback:
- $\tuple {e_G, e_H} \in G \times^\theta H$
- $\map \theta {e_G \circ N} = e_H * K$
By Coset by Identity, $e_G \circ N, e_H * K$ are the identities of $G / N$ and $H / K$
From Group Homomorphism Preserves Identity:
- $\map \theta {e_G \circ N} = e_H * K$
So $\tuple {e_G, e_H} \in G \times^\theta H$
Thus $G \times^\theta H$ is non-empty.
$\Box$
Condition $(2)$
Let $\tuple {g, h}$ and $\tuple {g', h'}$ be elements of $G \times^\theta H$.
It follows by definition of $\theta$ that:
- $\map \theta {g \circ N} = h * K$
and:
- $\map \theta {g' \circ N} = h' * K$
By the morphism property:
- $\map \theta {g \circ N} * \map \theta {g' \circ N} = \map \theta {g \circ N \circ g' \circ N} = \map \theta {\paren {g \circ g'} \circ N}$
Hence:
\(\ds \paren {h * h'} * K\) | \(=\) | \(\ds h * K * h' * K\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map \theta {g \circ N} * \map \theta {g' \circ N}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map \theta {\paren {g \circ g'} \circ N}\) |
Thus:
- $\tuple {g \circ g', h * h'} \in G \times^\theta H$
Hence $G \times^\theta H$ is closed under the operation.
$\Box$
Condition $(3)$
Let $\tuple {g, h} \in G \times^\theta H$.
Then:
\(\ds \map \theta {g \circ N}\) | \(=\) | \(\ds h * K\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map \theta {g \circ N}^{-1}\) | \(=\) | \(\ds h^{-1} * K\) |
Then:
\(\ds \map \theta {g \circ N}^{-1}\) | \(=\) | \(\ds \map \theta {g^{-1} \circ N}\) | Group Homomorphism Preserves Inverses | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map \theta {g^{-1} \circ N}\) | \(=\) | \(\ds h^{-1} * K\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \tuple {g^{-1}, h^{-1} }\) | \(\in\) | \(\ds G \times^\theta H\) |
Thus $G \times^\theta H$ is closed under inverses.
$\Box$
Therefore by the Two-Step Subgroup Test:
- $G \times^\theta H \le G \times H$
$\blacksquare$
Sources
- 1996: John F. Humphreys: A Course in Group Theory ... (previous) ... (next): Chapter $13$: Direct products: Definition $13.11$