Quadratic Equation/Examples/z^4 + z^2 + 1 = 0

From ProofWiki
Jump to navigation Jump to search

Example of Quadratic Equation

The quartic equation:

$z^4 + z^2 + 1 = 0$

has the solutions:

$z = \dfrac {\pm 1 \pm i \sqrt 3} 2$


Proof

Although this is a quartic in $z$, it can be solved as a quadratic in $z^2$.

\(\ds z^4 + z^2 + 1\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds z^2\) \(=\) \(\ds \dfrac {-1 \pm \sqrt {1^2 - 4 \times 1 \times 1} } {2 \times 1}\) Quadratic Formula: $a = 1$, $b = 1$, $c = 1$
\(\ds \) \(=\) \(\ds -1 \pm \dfrac {\sqrt {-3} } 2\) simplifying
\(\ds \) \(=\) \(\ds -\dfrac 1 2 \pm i \dfrac {\sqrt 3} 2\) Definition of Imaginary Unit

$\Box$


$-\dfrac 1 2 \pm i \dfrac {\sqrt 3} 2$ are recognised as the complex cube roots of unity, and so:

\(\ds z^2\) \(=\) \(\ds e^{\pm 2 i \pi / 3}\)
\(\ds \) \(=\) \(\ds \cos \dfrac {2 \pi} 3 \pm i \sin \dfrac {2 \pi} 3\)


Taking each in turn:

\(\ds z^2\) \(=\) \(\ds \cos \dfrac {2 \pi} 3 + i \sin \dfrac {2 \pi} 3\)
\(\ds \) \(=\) \(\ds \map \cis {\dfrac {2 \pi} 3 + 2 k \pi\) for $k = 0, 1$
\(\ds \leadsto \ \ \) \(\ds z\) \(=\) \(\ds \map \cis {\dfrac {\pi} 3 + k \pi}\) for $k = 0, 1$
\(\ds \leadsto \ \ \) \(\ds z\) \(=\) \(\ds \map \cis {\dfrac {\pi} 3} \text { or } \map \cis {\dfrac {4 \pi} 3}\)
\(\ds \leadsto \ \ \) \(\ds z\) \(=\) \(\ds \dfrac 1 2 + \dfrac {\sqrt 3} 2 \text { or } -\dfrac 1 2 - \dfrac {\sqrt 3} 2\)


and:

\(\ds z^2\) \(=\) \(\ds \cos \dfrac {2 \pi} 3 - i \sin \dfrac {2 \pi} 3\)
\(\ds \) \(=\) \(\ds \cos \dfrac {4 \pi} 3 + i \sin \dfrac {4 \pi} 3\) for $k = 0, 1$
\(\ds \) \(=\) \(\ds \map \cis {\dfrac {4 \pi} 3 + 2 k \pi}\) for $k = 0, 1$
\(\ds \leadsto \ \ \) \(\ds z\) \(=\) \(\ds \map \cis {\dfrac {2 \pi} 3 + k \pi}\) for $k = 0, 1$
\(\ds \leadsto \ \ \) \(\ds z\) \(=\) \(\ds \map \cis {\dfrac {2 \pi} 3} \text { or } \map \cis {\dfrac {5 \pi} 3}\)
\(\ds \leadsto \ \ \) \(\ds z\) \(=\) \(\ds -\dfrac 1 2 + \dfrac {\sqrt 3} 2 \text { or } \dfrac 1 2 - \dfrac {\sqrt 3} 2\)

$\blacksquare$


Illustration

The roots of the quartic equation:

$z^4 + z^2 + 1 = 0$

can be depicted as follows:


Roots of z^4 + z^2 + 1.png


Sources