Quadruple Angle Formulas/Cosine
< Quadruple Angle Formulas(Redirected from Quadruple Angle Formula for Cosine)
Jump to navigation
Jump to search
Theorem
- $\cos 4 \theta = 8 \cos^4 \theta - 8 \cos^2 \theta + 1$
where $\cos$ denotes cosine.
Corollary
- $\cos 4 \theta = 8 \sin^4 \theta - 8 \sin^2 \theta + 1$
Factor Form
- $\cos 4 \theta = \paren {\cos \theta - \cos \dfrac \pi 8} \paren {\cos \theta - \cos \dfrac {3 \pi} 8} \paren {\cos \theta - \cos \dfrac {5 \pi} 8} \paren {\cos \theta - \cos \dfrac {7 \pi} 8}$
Proof 1
\(\ds \cos 4 \theta\) | \(=\) | \(\ds \cos \paren {2 \theta + 2 \theta}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \cos 2 \theta \cos 2 \theta - \sin 2 \theta \sin 2 \theta\) | Cosine of Sum | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\cos^2 \theta - \sin^2 \theta} \paren {\cos^2 \theta - \sin^2 \theta} - \paren {2 \sin \theta \cos \theta} \paren {2 \sin \theta \cos \theta}\) | Double Angle Formulas | |||||||||||
\(\ds \) | \(=\) | \(\ds \cos^4 \theta - 2 \cos^2 \theta \sin^2 \theta + \sin^4 \theta - 4 \cos^2 \theta \sin^2 \theta\) | multiplying out | |||||||||||
\(\ds \) | \(=\) | \(\ds \cos^4 \theta - 2 \cos^2 \theta \paren {1 - \cos^2 \theta} + \paren {1 - \cos^2 \theta}^2 - 4 \cos^2 \theta \paren {1 - \cos^2 \theta}\) | Sum of Squares of Sine and Cosine | |||||||||||
\(\ds \) | \(=\) | \(\ds 8 \cos^4 \theta - 8 \cos^2 \theta + 1\) | multiplying out and gathering terms |
$\blacksquare$
Proof 2
We have:
\(\ds \cos 4 \theta + i \sin 4 \theta\) | \(=\) | \(\ds \paren {\cos \theta + i \sin \theta}^4\) | De Moivre's Formula | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\cos \theta}^4 + \binom 4 1 \paren {\cos \theta}^3 \paren {i \sin \theta} + \binom 4 2 \paren {\cos \theta}^2 \paren {i \sin \theta}^2\) | ||||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \binom 4 3 \paren {\cos \theta} \paren {i \sin \theta}^3 + \paren {i \sin \theta}^4\) | Binomial Theorem | ||||||||||
\(\ds \) | \(=\) | \(\ds \cos^4 \theta + 4 i \cos^3 \theta \sin \theta - 6 \cos^2 \theta \sin^2 \theta\) | substituting for binomial coefficients | |||||||||||
\(\ds \) | \(\) | \(\, \ds - \, \) | \(\ds 4 i \cos \theta \sin^3 \theta + \sin^4 \theta\) | and using $i^2 = -1$ | ||||||||||
\(\text {(1)}: \quad\) | \(\ds \) | \(=\) | \(\ds \cos^4 \theta - 6 \cos^2 \theta \sin^2 \theta + \sin^4 \theta\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds 4 i \cos^3 \theta \sin \theta - 4 i \cos \theta \sin^3 \theta\) | rearranging |
Hence:
\(\ds \cos 4 \theta\) | \(=\) | \(\ds \cos^4 \theta - 6 \cos^2 \theta \sin^2 \theta + \sin^4 \theta\) | equating real parts in $(1)$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \cos^4 \theta - 6 \cos^2 \theta \paren {1 - \cos^2 \theta} + \paren {1 - \cos^2 \theta}^2\) | Sum of Squares of Sine and Cosine | |||||||||||
\(\ds \) | \(=\) | \(\ds 8 \cos^4 \theta - 8 \cos^2 \theta + 1\) | multiplying out and gathering terms |
$\blacksquare$
Sources
- 1953: L. Harwood Clarke: A Note Book in Pure Mathematics ... (previous) ... (next): $\text V$. Trigonometry: Exercises $\text {XXXII}$: $16$.
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 5$: Trigonometric Functions: $5.48$