Quadruple Angle Formulas/Hyperbolic Tangent

From ProofWiki
Jump to navigation Jump to search

Theorem

$\tanh 4 x = \dfrac {4 \tanh x + 4 \tanh^3 x} {1 + 6 \tanh^2 x + \tanh^4 x}$

where $\tanh$ denotes hyperbolic tangent.


Proof

\(\ds \tanh 4 x)\) \(=\) \(\ds \frac {\sinh 4 x} {\cosh 4 x}\) Definition 2 of Hyperbolic Tangent
\(\ds \) \(=\) \(\ds \frac {8 \sinh^3 x \cosh x + 4 \sinh x \cosh x} {\cosh 4 x}\) Quadruple Angle Formula for Hyperbolic Sine
\(\ds \) \(=\) \(\ds \frac {8 \sinh^3 x \cosh x + 4 \sinh x \cosh x} {8 \cosh^4 x - 8 \cosh^2 x + 1}\) Quadruple Angle Formula for Hyperbolic Cosine
\(\ds \) \(=\) \(\ds \frac {8 \tanh^3 x + 4 \frac {\tanh x} {\cosh^2 x} } {8 - \frac 8 {\cosh^2 x} + \frac 1 {\cosh^4 x} }\) dividing top and bottom by $\cosh^4 x$
\(\ds \) \(=\) \(\ds \frac {8 \tanh^3 x + 4 \tanh x \sech^2 x} {8 - 8 \sech^2 x + \sech^4 x}\) Definition 2 of Hyperbolic Secant
\(\ds \) \(=\) \(\ds \frac {8 \tanh^3 x + 4 \tanh x \paren {1 - \tanh^2 x} } {8 - 8 \paren {1 - \tanh^2 x} + \paren {1 - \tanh^2 x}^2}\) Sum of Squares of Hyperbolic Secant and Tangent
\(\ds \) \(=\) \(\ds \frac {4 \tanh^3 x + 4 \tanh x} {1 + 6 \tanh^2 x + \tanh^4 x}\) multiplying out and gathering terms

$\blacksquare$


Also see


Sources