Quadruple Angle Formulas/Cosine/Factor Form

From ProofWiki
Jump to navigation Jump to search

Theorem

$\cos 4 \theta = \paren {\cos \theta - \cos \dfrac \pi 8} \paren {\cos \theta - \cos \dfrac {3 \pi} 8} \paren {\cos \theta - \cos \dfrac {5 \pi} 8} \paren {\cos \theta - \cos \dfrac {7 \pi} 8}$


Proof

\(\ds z^8 + 1\) \(=\) \(\ds \prod_{k \mathop = 0}^3 \paren {z^2 - 2 z \cos \dfrac {\paren {2 k + 1} \pi} 8 + 1}\) Complex Algebra Examples: $z^8 + 1$
\(\ds \leadsto \ \ \) \(\ds z^4 + z^{-4}\) \(=\) \(\ds \prod_{k \mathop = 0}^3 \paren {z - 2 \cos \dfrac {\paren {2 k + 1} \pi} 8 + z^{-1} }\) dividing both sides by $z^4$


Setting $z = e^{i \theta}$:

\(\ds e^{4 i \theta} + e^{-4 i \theta}\) \(=\) \(\ds \prod_{k \mathop = 0}^3 \paren {e^{i \theta} - 2 \cos \dfrac {\paren {2 k + 1} i \pi} 8 + e^{-i \theta} }\)
\(\ds \leadsto \ \ \) \(\ds 2 \dfrac {e^{4 i \theta} + e^{-4 i \theta} } 2\) \(=\) \(\ds \prod_{k \mathop = 0}^3 \paren {2 \frac {e^{i \theta} + e^{-i \theta} } 2 - 2 \cos \dfrac {\paren {2 k + 1} i \pi} 8}\) rearranging
\(\ds \leadsto \ \ \) \(\ds 2 \cos 4 \theta\) \(=\) \(\ds \prod_{k \mathop = 0}^3 \paren {2 \cos \theta - 2 \cos \dfrac {\paren {2 k + 1} i \pi} 8}\) Euler's Cosine Identity
\(\ds \leadsto \ \ \) \(\ds \cos 4 \theta\) \(=\) \(\ds \prod_{k \mathop = 0}^3 \paren {\cos \theta - \cos \dfrac {\paren {2 k + 1} i \pi} 8}\) simplifying

$\blacksquare$


Sources