Quadruple Angle Formulas/Hyperbolic Cosine

From ProofWiki
Jump to navigation Jump to search

Theorem

$\cosh 4 x = 8 \cosh^4 x - 8 \cosh^2 x + 1$

where $\cosh$ denotes hyperbolic cosine.


Proof

\(\ds \cosh 4 x\) \(=\) \(\ds \map \cosh {2 x + 2 x}\)
\(\ds \) \(=\) \(\ds \cosh 2 x \cosh 2 x + \sinh 2 x \sinh 2 x\) Hyperbolic Cosine of Sum
\(\ds \) \(=\) \(\ds \paren {\cosh^2 x + \sinh^2 x} \paren {\cosh^2 x + \sinh^2 x} + \paren {2 \sinh x \cosh x} \paren {2 \sinh x \cosh x}\) Double Angle Formulas
\(\ds \) \(=\) \(\ds \cosh^4 x + 2 \cosh^2 x \sinh^2 x + \sinh^4 x + 4 \cosh^2 x \sinh^2 x\) multiplying out
\(\ds \) \(=\) \(\ds \cosh^4 x + 2 \cosh^2 x \paren {\cosh^2 x - 1} + \paren {\cosh^2 x - 1}^2 + 4 \cosh^2 x \paren {\cosh^2 x - 1}\) Difference of Squares of Hyperbolic Cosine and Sine
\(\ds \) \(=\) \(\ds 8 \cosh^4 x - 8 \cosh^2 x + 1\) multiplying out and gathering terms

$\blacksquare$


Also see


Sources