Quadruple Angle Formulas/Hyperbolic Sine

From ProofWiki
Jump to navigation Jump to search

Theorem

$\sinh 4 x = 8 \sinh^3 x \cosh x + 4 \sinh x \cosh x$

where $\sinh$ and $\cosh$ denote hyperbolic sine and hyperbolic cosine respectively.


Proof

\(\ds \sinh 4 x\) \(=\) \(\ds \map \sinh {3 x + x}\)
\(\ds \) \(=\) \(\ds \sinh 3 x \cosh x + \cosh 3 x \sinh x\) Hyperbolic Sine of Sum
\(\ds \) \(=\) \(\ds \paren {3 \sinh x + 4 \sinh^3 x} \cosh x + \cosh 3 x \sinh x\) Triple Angle Formula for Hyperbolic Sine
\(\ds \) \(=\) \(\ds \paren {3 \sinh x + 4 \sinh^3 x} \cosh x + \paren {4 \cosh^3 x - 3 \cosh x} \sinh x\) Triple Angle Formula for Hyperbolic Cosine
\(\ds \) \(=\) \(\ds 3 \sinh x \cosh x + 4 \sinh^3 x \cosh x + 4 \cosh^3 x \sinh x - 3 \cosh x \sinh x\) multiplying out
\(\ds \) \(=\) \(\ds 3 \sinh x \cosh x + 4 \sinh^3 x \cosh x\)
\(\ds \) \(\) \(\, \ds + \, \) \(\ds 4 \cosh x \paren {1 + \sinh^2 x} \sinh x - 3 \cosh x \sinh x\) Difference of Squares of Hyperbolic Cosine and Sine
\(\ds \) \(=\) \(\ds 8 \sinh^3 x \cosh x + 4 \sinh x \cosh x\) multiplying out and gathering terms

$\blacksquare$


Also see


Sources