Quadruple Angle Formulas/Sine/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\sin 4 \theta = 4 \sin \theta \cos \theta - 8 \sin^3 \theta \cos \theta$


Proof

We have:

\(\ds \cos 4 \theta + i \sin 4 \theta\) \(=\) \(\ds \paren {\cos \theta + i \sin \theta}^4\) De Moivre's Formula
\(\ds \) \(=\) \(\ds \paren {\cos \theta}^4 + \binom 4 1 \paren {\cos \theta}^3 \paren {i \sin \theta} + \binom 4 2 \paren {\cos \theta}^2 \paren {i \sin \theta}^2\)
\(\ds \) \(\) \(\, \ds + \, \) \(\ds \binom 4 3 \paren {\cos \theta} \paren {i \sin \theta}^3 + \paren {i \sin \theta}^4\) Binomial Theorem
\(\ds \) \(=\) \(\ds \cos^4 \theta + 4 i \cos^3 \theta \sin \theta - 6 \cos^2 \theta \sin^2 \theta\) substituting for binomial coefficients
\(\ds \) \(\) \(\, \ds - \, \) \(\ds 4 i \cos \theta \sin^3 \theta + \sin^4 \theta\) and using $i^2 = -1$
\(\text {(1)}: \quad\) \(\ds \) \(=\) \(\ds \cos^4 \theta - 6 \cos^2 \theta \sin^2 \theta + \sin^4 \theta\)
\(\ds \) \(\) \(\, \ds + \, \) \(\ds 4 i \cos^3 \theta \sin \theta - 4 i \cos \theta \sin^3 \theta\) rearranging


Hence:

\(\ds \sin 4 \theta\) \(=\) \(\ds 4 \cos^3 \theta \sin \theta - 4 \cos \theta \sin^3 \theta\) equating imaginary parts in $(1)$
\(\ds \) \(=\) \(\ds 4 \cos \theta \paren {1 - \sin^2 \theta} \sin \theta - 4 \cos \theta \sin^3 \theta\) Sum of Squares of Sine and Cosine
\(\ds \) \(=\) \(\ds 4 \cos \theta \sin \theta - 8 \sin^3 \theta \cos \theta\) multiplying out and gathering terms

$\blacksquare$