Quintuple Angle Formulas/Cosine/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\cos 5 \theta = 16 \cos^5 \theta - 20 \cos^3 \theta + 5 \cos \theta$


Proof

We have:

\(\ds \cos 5 \theta + i \sin 5 \theta\) \(=\) \(\ds \paren {\cos \theta + i \sin \theta}^5\) De Moivre's Formula
\(\ds \) \(=\) \(\ds \paren {\cos \theta}^5 + \binom 5 1 \paren {\cos \theta}^4 \paren {i \sin \theta} + \binom 5 2 \paren {\cos \theta}^3 \paren {i \sin \theta}^2\) Binomial Theorem
\(\ds \) \(\) \(\, \ds + \, \) \(\ds \binom 5 3 \paren {\cos \theta}^2 \paren {i \sin \theta}^3 + \binom 5 4 \paren {\cos \theta} \paren {i \sin \theta}^4 + \paren {i \sin \theta}^5\)
\(\ds \) \(=\) \(\ds \cos^5 \theta + 5 i \cos^4 \theta \sin \theta - 10 \cos^3 \theta \sin^2 \theta\) substituting for binomial coefficients
\(\ds \) \(\) \(\, \ds - \, \) \(\ds 10 i \cos^2 \theta \sin^3 \theta + 5 \cos \theta \sin^4 \theta + i \sin^5 \theta\) and using $i^2 = -1$
\(\text {(1)}: \quad\) \(\ds \) \(=\) \(\ds \cos^5 \theta - 10 \cos^3 \theta \sin^2 \theta + 5 \cos \theta \sin^4 \theta\)
\(\ds \) \(\) \(\, \ds + \, \) \(\ds i \paren {5 \cos^4 \theta \sin \theta - 10 \cos^2 \theta \sin^3 \theta + \sin^5 \theta}\) rearranging


Hence:

\(\ds \cos 5 \theta\) \(=\) \(\ds \cos^5 \theta - 10 \cos^3 \theta \sin^2 \theta + 5 \cos \theta \sin^4 \theta\) equating real parts in $(1)$
\(\ds \) \(=\) \(\ds \cos^5 \theta - 10 \cos^3 \theta \paren {1 - \cos^2 \theta} + 5 \cos \theta \paren {1 - \cos^2 \theta}^2\) Sum of Squares of Sine and Cosine
\(\ds \) \(=\) \(\ds 16 \cos^5 \theta - 20 \cos^3 \theta + 5 \cos \theta\) multiplying out and gathering terms

$\blacksquare$


Sources